-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtrain.py
260 lines (226 loc) · 9.13 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
import os
import sys
import wandb
import torch
import signal
import argparse
import datetime
from omegaconf import OmegaConf
from pytorch_lightning import Trainer
from pytorch_lightning import seed_everything
from pytorch_lightning.loggers import CSVLogger
from pytorch_lightning.loggers import WandbLogger
from pytorch_lightning.loggers import TensorBoardLogger
from pytorch_lightning.callbacks import ModelCheckpoint
# ddp stuff
from pytorch_lightning.strategies import DDPStrategy
from torch.distributed.algorithms.ddp_comm_hooks import default_hooks
from fmboost.helpers import load_model_weights
from fmboost.helpers import count_params, exists
from fmboost.helpers import instantiate_from_config
torch.set_float32_matmul_precision('high')
def parse_args():
parser = argparse.ArgumentParser("FMBoost")
parser.add_argument("--config", type=str, default=None, required=True)
parser.add_argument("--name", type=str, default="debug")
parser.add_argument("--use_wandb", action="store_true")
parser.add_argument("--use_wandb_offline", action="store_true")
parser.add_argument("--resume_checkpoint", type=str, default=None,
help="Resumes training from a checkpoint")
parser.add_argument("--load_weights", type=str, default=None,
help="Only loads the weights from a checkpoint")
parser.add_argument("--num_nodes", type=int, default=1)
# if -1, it uses all available GPUs
parser.add_argument("--devices", type=int, default=-1)
parser.add_argument("--find_unused_parameters", action="store_true")
parser.add_argument("--p2p-disable", action="store_true")
parser.add_argument("--seed", type=int, default=2024)
parser.add_argument("--tqdm_refresh_rate", type=int, default=1)
known, unknown = parser.parse_known_args()
if exists(known.resume_checkpoint) and exists(known.load_weights):
raise ValueError("Can't resume checkpoint and load weights at the same time.")
# check for mistakes
for arg in unknown:
if arg.startswith("-"):
raise ValueError(f"Unknown argument: {arg}")
return known, unknown
def main():
""" parse args """
args, unknown = parse_args()
""" Set seed """
seed_everything(args.seed)
""" Load config """
cli = OmegaConf.from_dotlist(unknown)
cfg = OmegaConf.load(args.config)
cfg = OmegaConf.merge(cfg, cli)
""" Setup Logging """
now = datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S")
exp_name = f"{args.name}_{now}" if exists(args.name) else now
log_dir = os.path.join("logs", exp_name)
ckpt_dir = os.path.join(log_dir, "checkpoints")
use_wandb_logging = args.use_wandb or args.use_wandb_offline
# setup loggers
if use_wandb_logging:
usr_name = os.environ.get('USER', os.environ.get('USERNAME'))
mode = "offline" if args.use_wandb_offline else "online"
online_logger = WandbLogger(
dir=log_dir,
save_dir=log_dir,
name=exp_name,
project="fmboost",
tags=[usr_name, *cfg.get("tags", [])],
config=OmegaConf.to_object(cfg),
mode=mode,
group="DDP"
)
else:
online_logger = TensorBoardLogger(
save_dir=log_dir,
name="",
version="",
log_graph=False,
default_hp_metric=False,
)
csv_logger = CSVLogger(
log_dir,
name="",
version="",
prefix="",
flush_logs_every_n_steps=500
)
csv_logger.log_hyperparams(OmegaConf.to_container(cfg))
logger = [online_logger, csv_logger]
""" Setup dataloader """
data = instantiate_from_config(cfg.data)
""" Setup model """
module = instantiate_from_config(cfg.model)
""" Setup callbacks """
checkpoint_callback = ModelCheckpoint(
dirpath=ckpt_dir,
filename="step{step:06d}",
# from config
**cfg.train.checkpoint_callback_params
)
callbacks = [checkpoint_callback]
# add tqdm progress bar callback
if args.tqdm_refresh_rate != 1:
from pytorch_lightning.callbacks import TQDMProgressBar
tqdm_callback = TQDMProgressBar(refresh_rate=args.tqdm_refresh_rate)
callbacks.append(tqdm_callback)
# other callbacks from config
callbacks_cfg = cfg.train.get("callbacks", None)
if exists(callbacks_cfg):
for cb_cfg in callbacks_cfg:
cb = instantiate_from_config(cb_cfg)
callbacks.append(cb)
""" Setup trainer """
if torch.cuda.is_available():
print("Using GPU")
gpu_kwargs = {
'accelerator': 'gpu',
'strategy': ('ddp_find_unused_parameters_true' if args.find_unused_parameters else "ddp")
}
if args.devices > 0:
gpu_kwargs["devices"] = args.devices
else: # determine automatically
gpu_kwargs["devices"] = len([torch.cuda.device(i) for i in range(torch.cuda.device_count())])
gpu_kwargs["num_nodes"] = args.num_nodes
if args.num_nodes >= 2:
# multi-node hacks from
# https://lightning.ai/docs/pytorch/stable/advanced/ddp_optimizations.html
gpu_kwargs["strategy"] = DDPStrategy(
gradient_as_bucket_view=True,
ddp_comm_hook=default_hooks.fp16_compress_hook
)
if args.p2p_disable:
# multi-gpu hack for heidelberg servers
os.environ["NCCL_P2P_DISABLE"] = "1"
else:
print("Using CPU")
gpu_kwargs = {'accelerator': 'cpu'}
trainer = Trainer(
logger=logger,
callbacks=callbacks,
**gpu_kwargs,
# from config
**OmegaConf.to_container(cfg.train.trainer_params)
)
""" Setup signal handler """
# hacky way to avoid define this in the traininer module
def stop_training_method():
module.stop_training = False
print("-" * 40)
print("Try to save checkpoint to {}".format(ckpt_dir))
module.trainer.save_checkpoint(os.path.join(ckpt_dir, "interrupted.ckpt"))
module.trainer.should_stop = True
module.trainer.limit_val_batches = 0
print("Saved checkpoint.")
print("-" * 40)
module.stop_training_method = stop_training_method
# once the signal was sent, the stop_training flag tells
# the pl module get ready for save checkpoint
def signal_handler(sig, frame):
module.stop_training = True
signal.signal(signal.SIGUSR1, signal_handler)
""" Log some information """
# compute global batchsize
bs = cfg.data.params.batch_size
bs = bs * gpu_kwargs.get("devices", 1)
bs = bs * gpu_kwargs.get("num_nodes", 1)
bs = bs * cfg.train.trainer_params.get("accumulate_grad_batches", 1)
# log info
some_info = {
'Config': args.config,
'Name': exp_name,
'Log dir': log_dir,
'Logging': "Wandb" if use_wandb_logging else "Tensorboard",
'Params': count_params(module),
'Trainer': cfg.model.get("target", "not-specified"),
'Dataset': cfg.data.get("name", "not-specified"),
'Batchsize': cfg.data.params.batch_size,
'Devices': gpu_kwargs.get("devices", 1),
'Num nodes': gpu_kwargs.get("num_nodes", 1),
'Gradient accum': cfg.train.trainer_params.get("accumulate_grad_batches", 1),
'Global batchsize': bs,
'Resume ckpt': args.resume_checkpoint,
'Load weights': args.load_weights,
'Seed': args.seed,
# training specific
'Low-Res': cfg.model.params.get('low_res_size', 'not-specified'),
'High-Res': cfg.model.params.get('high_res_size', 'not-specified'),
'Upsampling': cfg.model.params.get('upsampling_mode', 'bilinear'),
'Start w. Noise': cfg.model.params.get('start_from_noise', False),
'Noising Step': cfg.model.params.get('noising_step', -1),
'CA context': cfg.model.params.get('ca_context', False),
'CAT context': cfg.model.params.get('concat_context', False),
}
# Make sure we don't log multiple times
if trainer.global_rank == 0:
print("-" * 40)
for k, v in gpu_kwargs.items():
print(f"{k:<16}: {v}")
print("-" * 40)
for k, v in some_info.items():
if use_wandb_logging:
online_logger.experiment.summary[k] = v
if isinstance(v, float):
print(f"{k:<16}: {v:.5f}")
elif isinstance(v, int):
print(f"{k:<16}: {v:,}")
elif isinstance(v, bool):
print(f"{k:<16}: {'True' if v else 'False'}")
else:
print(f"{k:<16}: {v}")
print("-" * 40)
# log called command
if use_wandb_logging:
online_logger.experiment.summary["command"] = " ".join(["python"] + sys.argv)
# save config file
OmegaConf.save(cfg, f"{log_dir}/config.yaml")
""" Train """
ckpt_path = args.resume_checkpoint if exists(args.resume_checkpoint) else None
if exists(args.load_weights):
module = load_model_weights(module, args.load_weights, strict=False)
trainer.fit(module, data, ckpt_path=ckpt_path)
if __name__ == "__main__":
main()