forked from EleutherAI/gpt-neo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
240 lines (203 loc) · 10.7 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
"""GPT-like model in Mesh-Tensorflow"""
from functools import partial
import mesh_tensorflow as mtf
import tensorflow.compat.v1 as tf
from tensorflow.python.tpu import tpu_config, tpu_estimator
from tensorflow_estimator.python.estimator import estimator as estimator_lib
from utils import save_config, expand_attention_types_params, yes_or_no, remove_gs_or_filepath, setup_logging, \
check_dataset
from inputs import generic_text, pred_input, handle_pred_output, mlm_sample_text
from model_fns import model_fn
from data.encoders import fetch_encoder
from configs import fetch_model_params
from tasks import task_descriptors
import argparse
import json
import numpy
def parse_args():
# Parse command line arguments
parser = argparse.ArgumentParser()
parser.add_argument("--tpu", type=str, help="Name of TPU to train on, if any.")
parser.add_argument("--gpu_ids", nargs="+", type=str, default=["device:GPU:0"],
help="If training on GPU, can specify your GPU names in a list - i.e 'device:GPU:0 device:GPU:1'")
parser.add_argument("--model", type=str, default=None, help="JSON file that contains model parameters.")
parser.add_argument("--steps_per_checkpoint", type=int, default=5000, help="Save a model checkpoint every X steps.")
parser.add_argument("--auto_layout", action="store_true", help="If set, generates and prints the most memory "
"efficient layout according to MTF auto layout.")
parser.add_argument("--auto_layout_and_mesh_shape", action="store_true",
help="If set, generates and prints the most memory efficient layout and mesh shape according to"
" MTF auto layout.")
parser.add_argument("--new", action="store_true", help="If set, deletes previous checkpoint, if it exists, and "
"starts a new training run")
parser.add_argument("--predict", action="store_true", help="If set, uses the model to predict rather than train.")
parser.add_argument("--eval", action="store_true", help="If set, run model in evaluation mode.")
parser.add_argument("--prompt", type=str, help="path to .txt file containing a prompt for prediction. If empty, "
"defaults to unicorns.",
default="")
parser.add_argument("--check_dataset", action="store_true",
help="If set, outputs sample from the dataset and quits.")
parser.add_argument("--sacred_id", type=str, default="nosacred", help="Sacred run id.")
args = parser.parse_args()
assert args.model is not None, "Model must be set"
return args
def main(args):
# Setup logging
logger = setup_logging(args)
# Read params of model
params = fetch_model_params(args.model)
# Fetch appropriate input functions
input_fn = generic_text
pred_input_fn = pred_input
handle_pred_output_fn = handle_pred_output
if params["mlm_training"]:
mlm_sample_text_fn = partial(mlm_sample_text, params)
input_fn = partial(generic_text, sample_text_fn=mlm_sample_text_fn)
# Fetch encoder per params
encoder = fetch_encoder(params)
pred_input_fn = partial(pred_input_fn, path_to_prompt=args.prompt, logger=logger, enc=encoder)
# Sample from Dataset if check dataset flag is on
if args.check_dataset:
check_dataset(input_fn, params)
# Confirm deletion of checkpoint files if --new flag is set
if args.new:
if yes_or_no(f"Are you sure you want to remove '{params['model_path']}' to start afresh?"):
remove_gs_or_filepath(params["model_path"])
else:
exit()
# Save config to logdir for experiment management
save_config(params, params["model_path"])
# Add to params: auto_layout, auto_layout_and_mesh_shape, use_tpu, num_cores
mesh_shape = mtf.convert_to_shape(params["mesh_shape"])
params["num_cores"] = mesh_shape.size
params["auto_layout"] = args.auto_layout
params["auto_layout_and_mesh_shape"] = args.auto_layout_and_mesh_shape
params["use_tpu"] = True if not args.tpu is None else False
params["gpu_ids"] = args.gpu_ids
params["steps_per_checkpoint"] = args.steps_per_checkpoint
# Expand attention types param
params["attention_types"] = expand_attention_types_params(params["attention_types"])
assert len(params["attention_types"]) == params["n_layer"] # Assert that the length of expanded list = num layers
params["predict_batch_size"] = params.get("predict_batch_size", 1) # Default to 1
params["predict"] = args.predict
params['model'] = params.get("model", "GPT") # Default model selection to GPT since it's the only option for now
# Sample quality of MoE models suffers when using the faster sampling method, so default to slow_sampling if
# moe layers are present
params["slow_sampling"] = True if params["moe_layers"] is not None else False
logger.info(f"params = {params}")
# Get eval tasks from params
eval_tasks = params.get("eval_tasks", [])
has_predict_or_eval_steps_or_eval_tasks = params["predict_steps"] > 0 or params["eval_steps"] > 0 or len(
eval_tasks) > 0
for t in eval_tasks:
assert t in task_descriptors, f"Eval task '{t}' is not known"
task_descriptors[t]["init_fn"](params)
# Set up TPUs and Estimator
if args.tpu == "colab":
tpu_cluster_resolver = tf.distribute.cluster_resolver.TPUClusterResolver() if params["use_tpu"] else None
else:
tpu_cluster_resolver = tf.distribute.cluster_resolver.TPUClusterResolver(args.tpu) if params["use_tpu"] else None
config = tpu_config.RunConfig(
cluster=tpu_cluster_resolver,
model_dir=params["model_path"],
save_checkpoints_steps=None, # Disable the default saver
save_checkpoints_secs=None, # Disable the default saver
log_step_count_steps=params["iterations"],
save_summary_steps=params["iterations"],
tpu_config=tpu_config.TPUConfig(
num_shards=mesh_shape.size,
iterations_per_loop=params["iterations"],
num_cores_per_replica=1,
per_host_input_for_training=tpu_config.InputPipelineConfig.BROADCAST))
estimator = tpu_estimator.TPUEstimator(
use_tpu=params["use_tpu"],
model_fn=model_fn,
config=config,
train_batch_size=params["train_batch_size"],
eval_batch_size=params["train_batch_size"],
predict_batch_size=params["predict_batch_size"],
params=params)
def _make_task_estimator(task):
task_params = params.copy()
task_params["eval_task"] = task
return tpu_estimator.TPUEstimator(
use_tpu=params["use_tpu"],
model_fn=model_fn,
config=config,
train_batch_size=params["train_batch_size"],
eval_batch_size=params["eval_batch_size"],
predict_batch_size=params["predict_batch_size"],
params=task_params)
eval_task_estimators = {
task: _make_task_estimator(task)
for task in eval_tasks
}
current_step = int(estimator_lib._load_global_step_from_checkpoint_dir(params["model_path"]))
logger.info(f"Current step {current_step}")
if args.predict:
# Predict
predictions = estimator.predict(input_fn=pred_input_fn)
logger.info("Predictions generated")
enc = fetch_encoder(params)
handle_pred_output_fn(predictions, logger, enc, params, out_name=f"predictions_{args.sacred_id}_{current_step}")
return
if args.eval:
for task in eval_tasks:
logger.info(f"Starting evaluation task '{task}'")
task_info = task_descriptors[task]["get_task_info_fn"](params)
task_estimator = eval_task_estimators[task]
task_input_fn = task_descriptors[task]["input_fn"]
eval_results = task_estimator.evaluate(
input_fn=task_input_fn,
steps=task_info["n_steps"],
name=task)
logger.info(f"Eval task '{task}' results: {eval_results}")
return
elif has_predict_or_eval_steps_or_eval_tasks:
# Eval and train - stop and predict and/or eval every checkpoint
while current_step < params["train_steps"]:
next_checkpoint = min(current_step + args.steps_per_checkpoint,
params["train_steps"])
estimator.train(input_fn=partial(input_fn, eval=False), max_steps=next_checkpoint)
current_step = next_checkpoint
def save_eval_results(task, eval_results):
def as_python(x):
if isinstance(x, numpy.generic):
return x.item()
return x
eval_results = {k: as_python(v) for k, v in eval_results.items()}
with open(f'eval_{args.sacred_id}.jsonl', 'a') as fh:
json.dump({'task': task, 'current_step': current_step, **eval_results}, fh)
fh.write('\n')
if params["predict_steps"] > 0:
logger.info("Running prediction...")
predictions = estimator.predict(input_fn=pred_input_fn)
enc = fetch_encoder(params)
handle_pred_output_fn(predictions, logger, enc, params, out_name=f"predictions_{args.sacred_id}_{current_step}")
if params["eval_steps"] > 0:
logger.info("Running evaluation...")
eval_results = estimator.evaluate(
input_fn=partial(input_fn, eval=True),
steps=params["eval_steps"])
logger.info(f"Eval results: {eval_results}")
save_eval_results('validation', eval_results)
for task in eval_tasks:
logger.info(f"Starting evaluation task '{task}'")
task_info = task_descriptors[task]["get_task_info_fn"](params)
task_estimator = eval_task_estimators[task]
task_input_fn = task_descriptors[task]["input_fn"]
eval_results = task_estimator.evaluate(
input_fn=task_input_fn,
steps=task_info["n_steps"],
name=task)
logger.info(f"Eval task '{task}' results: {eval_results}")
save_eval_results(task, eval_results)
return
else:
# Else, just train
while current_step < params["train_steps"]:
# Else, don't stop and restart
estimator.train(input_fn=partial(input_fn, eval=False), max_steps=params["train_steps"])
if __name__ == "__main__":
tf.disable_v2_behavior()
args = parse_args()
main(args)