-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathtrain_pipeline.py
261 lines (198 loc) · 8.88 KB
/
train_pipeline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
"""
Copyright (c) 2022, salesforce.com, inc.
All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""
import math
import time
from omegaconf import OmegaConf
from functools import partial
import argparse
import os
import random
import numpy as np
import torch
import torch.backends.cudnn as cudnn
from torch.utils.data import DataLoader
import lavis.tasks as tasks
from lavis.common.config import Config
from lavis.common.dist_utils import get_rank, init_distributed_mode, init_deepspeed_distributed_mode, is_main_process
from lavis.common.logger import setup_logger
from lavis.common.optims import (
LinearWarmupCosineLRScheduler,
LinearWarmupStepLRScheduler,
)
from lavis.common.registry import registry
from lavis.common.utils import now
# imports modules for registration
from lavis.datasets.builders import *
from lavis.models import *
from lavis.processors import *
from lavis.runners import *
from lavis.tasks import *
from lavis.datasets.data_utils import concat_datasets, reorg_datasets_by_split
from lavis.models.minigpt4qwen_models.minigpt4qwen_pipe import get_model
from deepspeed.pipe import PipelineModule
import deepspeed
import contextlib
from functools import partial
import wandb
def parse_args():
parser = argparse.ArgumentParser(description="Training")
parser.add_argument("--cfg-path", required=True, help="path to configuration file.")
parser.add_argument("--num-stages",type=int,default=0)
parser.add_argument("--llm-grad-ckpt", default=True, action="store_false")
parser.add_argument(
"--options",
nargs="+",
help="override some settings in the used config, the key-value pair "
"in xxx=yyy format will be merged into config file (deprecate), "
"change to --cfg-options instead.",
)
args = parser.parse_args()
# if 'LOCAL_RANK' not in os.environ:
# os.environ['LOCAL_RANK'] = str(args.local_rank)
return args
def setup_seeds(config):
seed = config.run_cfg.seed + get_rank()
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
cudnn.benchmark = False
cudnn.deterministic = True
def get_runner_class(cfg):
"""
Get runner class from config. Default to epoch-based runner.
"""
runner_cls = registry.get_runner_class(cfg.run_cfg.get("runner", "runner_base"))
return runner_cls
def collate_fn_minigpt4qwen(batch,preprocess_func,freeze_llm=True,dtype=torch.float32):
image_list, conversation_list = [], []
for sample in batch:
if isinstance(sample['image'],list):
image_list.extend(sample['image'])
else:
image_list.append(sample["image"])
conversation_list.append(sample["conversations"])
new_batch = \
{
"image": torch.stack(image_list, dim=0),
"conversations": conversation_list,
}
data_dict = preprocess_func(new_batch['conversations'])
if not freeze_llm:
new_batch['image'] = new_batch['image'].to(dtype)
return ((new_batch['image'], data_dict['input_ids'],data_dict['labels'],data_dict['attention_mask']),
data_dict['labels']
)
def get_scheduler(cfg,optimizer,max_steps,steps_per_epoch):
lr_sched_cls = registry.get_lr_scheduler_class(cfg.run_cfg.lr_sched)
max_epoch = cfg.run_cfg.max_epoch
min_lr = cfg.run_cfg.min_lr
init_lr = cfg.run_cfg.init_lr
decay_rate = cfg.run_cfg.get("lr_decay_rate", None)
warmup_start_lr = cfg.run_cfg.get("warmup_lr", -1)
warmup_steps = int(cfg.run_cfg["warmup_ratio"] * steps_per_epoch) if cfg.run_cfg.get("warmup_ratio",None) else cfg.run_cfg.get("warmup_steps", 0)
lr_sched = lr_sched_cls(
optimizer=optimizer,
max_epoch=max_epoch,
min_lr=min_lr,
init_lr=init_lr,
decay_rate=decay_rate,
warmup_start_lr=warmup_start_lr,
warmup_steps=warmup_steps,
max_steps=max_steps,
)
return lr_sched
def main():
# allow auto-dl completes on main process without timeout when using NCCL backend.
# os.environ["NCCL_BLOCKING_WAIT"] = "1"
# set before init_distributed_mode() to ensure the same job_id shared across all ranks.
job_id = now()
args = parse_args()
cfg = Config(args)
output_dir = cfg.run_cfg.output_dir
os.makedirs(output_dir,exist_ok=True)
init_deepspeed_distributed_mode(cfg.run_cfg)
setup_seeds(cfg)
ds_cfg = cfg.run_cfg.deepspeed_config
cfg.pretty_print()
task = tasks.setup_task(cfg)
datasets = task.build_datasets(cfg)
# import pdb;pdb.set_trace()
datasets = reorg_datasets_by_split(datasets)
datasets = concat_datasets(datasets)
model = task.build_model(cfg)
freeze_llm = model.freeze_llm
# preprocoss of multimodal tokenizer
preprocess_func = \
partial(model.preprocess,tokenizer=model.llm_tokenizer,max_len=model.max_txt_len,image_len=model.num_query_token)
collate_fn_minigpt4qwen_func = partial(collate_fn_minigpt4qwen, preprocess_func=preprocess_func)
assert args.num_stages > 1, f'pipeline parallel need stages more than 1, current num_stages is {args.num_stages}'
model = PipelineModule(layers=get_model(model,freeze_llm=freeze_llm,llm_grad_ckpt=args.llm_grad_ckpt), num_stages=args.num_stages, partition_method='uniform')# if freeze_llm else 'parameters')
print_string = f'GPU{cfg.run_cfg.gpu}\t' + f'Trainable Params: {sum([param.numel() for _, param in model.named_parameters() if param.requires_grad])}'
os.system(f'echo {print_string}')
model.cuda().bfloat16()
engine, optimizer, _, _ = deepspeed.initialize(
model=model,
config=OmegaConf.to_container(ds_cfg),
model_parameters=[p for p in model.parameters() if p.requires_grad],
)
model_dtype = next(model.parameters()).dtype
g = torch.Generator()
sampler = torch.utils.data.distributed.DistributedSampler(
datasets['train'],
num_replicas=engine.dp_world_size,
rank=engine.mpu.get_data_parallel_rank(),
shuffle=True
)
# print_string = f'GPU{cfg.run_cfg.gpu}\t' + f'rank{engine.mpu.get_data_parallel_rank()}'
# os.system(f'echo {print_string}')
train_dataloader = DataLoader(datasets['train'],
shuffle=False,
drop_last=True,
batch_size=ds_cfg.train_micro_batch_size_per_gpu,
generator=g,
sampler=sampler,
collate_fn=partial(collate_fn_minigpt4qwen_func,freeze_llm=freeze_llm,dtype=torch.float32 if freeze_llm else model_dtype),
num_workers=cfg.run_cfg.num_workers,
)
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / ds_cfg.gradient_accumulation_steps)
print(num_update_steps_per_epoch)
train_dataloader = deepspeed.utils.RepeatingLoader(train_dataloader)
lr_scheduler = get_scheduler(cfg,optimizer,
max_steps=cfg.run_cfg.max_epoch * num_update_steps_per_epoch,
steps_per_epoch=num_update_steps_per_epoch
)
start = time.time()
all_loss = 0.0
if is_main_process():
wandb.init(project="MPP-Qwen")
for epoch in range(cfg.run_cfg.max_epoch):
sampler.set_epoch(epoch)
train_iter = iter(train_dataloader)
for cur_step in range(num_update_steps_per_epoch):
step = cur_step + epoch * num_update_steps_per_epoch
with (torch.cuda.amp.autocast(dtype=model_dtype,cache_enabled=False) if freeze_llm and (model_dtype != torch.float32) else contextlib.nullcontext()):
loss = engine.train_batch(data_iter=train_iter)
lr_scheduler.step(cur_epoch=epoch, cur_step=step)
print(f"step = {step}, loss = {loss.item()}, lr={optimizer.param_groups[0]['lr']}")
if is_main_process():
wandb.log({"loss": loss.item()}, step=step)
wandb.log({"learning_rate": optimizer.param_groups[0]['lr']}, step=step)
all_loss += loss.item()
if (step + 1) % cfg.run_cfg.log_freq == 0:
now_time = time.time()
avg_time = (now_time - start) / cfg.run_cfg.log_freq
avg_loss = all_loss / cfg.run_cfg.log_freq
print(f"Step={step:>6}, lr={optimizer.param_groups[0]['lr']}, loss={avg_loss:.4f}, {avg_time:.2f} it/s")
start = now_time
all_loss = 0.0
if (step + 1) % num_update_steps_per_epoch == 0:
print(f"Saving at step {step}")
engine.save_checkpoint(output_dir)
if is_main_process():
wandb.finish()
if __name__ == "__main__":
main()