forked from TNTWEN/OpenVINO-YOLOV4
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathobject_detection_demo_yolov4_async.py
521 lines (423 loc) · 24.9 KB
/
object_detection_demo_yolov4_async.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
#!/usr/bin/env python3
"""
Copyright (C) 2018-2020 Intel Corporation
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
import logging
import threading
import os
import sys
from collections import deque
from argparse import ArgumentParser, SUPPRESS
from math import exp as exp
from time import perf_counter
from enum import Enum
import cv2
import numpy as np
from openvino.inference_engine import IECore
sys.path.append(os.path.join(os.path.dirname(os.path.dirname(os.path.abspath(__file__))), 'common'))
import monitors
logging.basicConfig(format="[ %(levelname)s ] %(message)s", level=logging.INFO, stream=sys.stdout)
log = logging.getLogger()
def build_argparser():
parser = ArgumentParser(add_help=False)
args = parser.add_argument_group('Options')
args.add_argument('-h', '--help', action='help', default=SUPPRESS, help='Show this help message and exit.')
args.add_argument("-m", "--model", help="Required. Path to an .xml file with a trained model.",
required=True, type=str)
args.add_argument("-i", "--input", help="Required. Path to an image/video file. (Specify 'cam' to work with "
"camera)", required=True, type=str)
args.add_argument("-l", "--cpu_extension",
help="Optional. Required for CPU custom layers. Absolute path to a shared library with "
"the kernels implementations.", type=str, default=None)
args.add_argument("-d", "--device",
help="Optional. Specify the target device to infer on; CPU, GPU, FPGA, HDDL or MYRIAD is"
" acceptable. The sample will look for a suitable plugin for device specified. "
"Default value is CPU", default="CPU", type=str)
args.add_argument("--labels", help="Optional. Labels mapping file", default=None, type=str)
args.add_argument("-t", "--prob_threshold", help="Optional. Probability threshold for detections filtering",
default=0.5, type=float)
args.add_argument("-iout", "--iou_threshold", help="Optional. Intersection over union threshold for overlapping "
"detections filtering", default=0.4, type=float)
args.add_argument("-r", "--raw_output_message", help="Optional. Output inference results raw values showing",
default=False, action="store_true")
args.add_argument("-nireq", "--num_infer_requests", help="Optional. Number of infer requests",
default=1, type=int)
args.add_argument("-nstreams", "--num_streams",
help="Optional. Number of streams to use for inference on the CPU or/and GPU in throughput mode "
"(for HETERO and MULTI device cases use format <device1>:<nstreams1>,<device2>:<nstreams2> "
"or just <nstreams>)",
default="", type=str)
args.add_argument("-nthreads", "--number_threads",
help="Optional. Number of threads to use for inference on CPU (including HETERO cases)",
default=None, type=int)
args.add_argument("-loop_input", "--loop_input", help="Optional. Iterate over input infinitely",
action='store_true')
args.add_argument("-no_show", "--no_show", help="Optional. Don't show output", action='store_true')
args.add_argument('-u', '--utilization_monitors', default='', type=str,
help='Optional. List of monitors to show initially.')
args.add_argument("--keep_aspect_ratio", action="store_true", default=False,
help='Optional. Keeps aspect ratio on resize.')
return parser
class YoloParams:
# ------------------------------------------- Extracting layer parameters ------------------------------------------
# Magic numbers are copied from yolo samples
def __init__(self, param, side):
self.num = 3 if 'num' not in param else int(param['num'])
self.coords = 4 if 'coords' not in param else int(param['coords'])
self.classes = 80 if 'classes' not in param else int(param['classes'])
self.side = side
self.anchors = [10.0, 13.0, 16.0, 30.0, 33.0, 23.0, 30.0, 61.0, 62.0, 45.0, 59.0, 119.0, 116.0, 90.0, 156.0,
198.0,
373.0, 326.0] if 'anchors' not in param else [float(a) for a in param['anchors'].split(',')]
self.isYoloV3 = False
if param.get('mask'):
mask = [int(idx) for idx in param['mask'].split(',')]
self.num = len(mask)
maskedAnchors = []
for idx in mask:
maskedAnchors += [self.anchors[idx * 2], self.anchors[idx * 2 + 1]]
self.anchors = maskedAnchors
self.isYoloV3 = True # Weak way to determine but the only one.
class Modes(Enum):
USER_SPECIFIED = 0
MIN_LATENCY = 1
class Mode():
def __init__(self, value):
self.current = value
def next(self):
if self.current.value + 1 < len(Modes):
self.current = Modes(self.current.value + 1)
else:
self.current = Modes(0)
class ModeInfo():
def __init__(self):
self.last_start_time = perf_counter()
self.last_end_time = None
self.frames_count = 0
self.latency_sum = 0
def scale_bbox(x, y, height, width, class_id, confidence, im_h, im_w, is_proportional):
if is_proportional:
scale = np.array([min(im_w/im_h, 1), min(im_h/im_w, 1)])
offset = 0.5*(np.ones(2) - scale)
x, y = (np.array([x, y]) - offset) / scale
width, height = np.array([width, height]) / scale
xmin = int((x - width / 2) * im_w)
ymin = int((y - height / 2) * im_h)
xmax = int(xmin + width * im_w)
ymax = int(ymin + height * im_h)
# Method item() used here to convert NumPy types to native types for compatibility with functions, which don't
# support Numpy types (e.g., cv2.rectangle doesn't support int64 in color parameter)
return dict(xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, class_id=class_id.item(), confidence=confidence.item())
def parse_yolo_region(predictions, resized_image_shape, original_im_shape, params, threshold, is_proportional):
# ------------------------------------------ Validating output parameters ------------------------------------------
_, _, out_blob_h, out_blob_w = predictions.shape
assert out_blob_w == out_blob_h, "Invalid size of output blob. It sould be in NCHW layout and height should " \
"be equal to width. Current height = {}, current width = {}" \
"".format(out_blob_h, out_blob_w)
# ------------------------------------------ Extracting layer parameters -------------------------------------------
orig_im_h, orig_im_w = original_im_shape
resized_image_h, resized_image_w = resized_image_shape
objects = list()
size_normalizer = (resized_image_w, resized_image_h) if params.isYoloV3 else (params.side, params.side)
bbox_size = params.coords + 1 + params.classes
# ------------------------------------------- Parsing YOLO Region output -------------------------------------------
for row, col, n in np.ndindex(params.side, params.side, params.num):
# Getting raw values for each detection bounding box
bbox = predictions[0, n*bbox_size:(n+1)*bbox_size, row, col]
x, y, width, height, object_probability = bbox[:5]
class_probabilities = bbox[5:]
if object_probability < threshold:
continue
# Process raw value
x = (col + x) / params.side
y = (row + y) / params.side
# Value for exp is very big number in some cases so following construction is using here
try:
width = exp(width)
height = exp(height)
except OverflowError:
continue
# Depends on topology we need to normalize sizes by feature maps (up to YOLOv3) or by input shape (YOLOv3)
width = width * params.anchors[2 * n] / size_normalizer[0]
height = height * params.anchors[2 * n + 1] / size_normalizer[1]
class_id = np.argmax(class_probabilities)
confidence = class_probabilities[class_id]*object_probability
if confidence < threshold:
continue
objects.append(scale_bbox(x=x, y=y, height=height, width=width, class_id=class_id, confidence=confidence,
im_h=orig_im_h, im_w=orig_im_w, is_proportional=is_proportional))
return objects
def intersection_over_union(box_1, box_2):#add DIOU-NMS support
width_of_overlap_area = min(box_1['xmax'], box_2['xmax']) - max(box_1['xmin'], box_2['xmin'])
height_of_overlap_area = min(box_1['ymax'], box_2['ymax']) - max(box_1['ymin'], box_2['ymin'])
cw = max(box_1['xmax'], box_2['xmax'])-min(box_1['xmin'], box_2['xmin'])
ch = max(box_1['ymax'], box_2['ymax'])-min(box_1['ymin'], box_2['ymin'])
c_area = cw**2+ch**2+1e-16
rh02 = ((box_2['xmax']+box_2['xmin'])-(box_1['xmax']+box_1['xmin']))**2/4+((box_2['ymax']+box_2['ymin'])-(box_1['ymax']+box_1['ymin']))**2/4
if width_of_overlap_area < 0 or height_of_overlap_area < 0:
area_of_overlap = 0
else:
area_of_overlap = width_of_overlap_area * height_of_overlap_area
box_1_area = (box_1['ymax'] - box_1['ymin']) * (box_1['xmax'] - box_1['xmin'])
box_2_area = (box_2['ymax'] - box_2['ymin']) * (box_2['xmax'] - box_2['xmin'])
area_of_union = box_1_area + box_2_area - area_of_overlap
if area_of_union == 0:
return 0
return area_of_overlap / area_of_union-pow(rh02/c_area,0.6)
def resize(image, size, keep_aspect_ratio, interpolation=cv2.INTER_LINEAR):
if not keep_aspect_ratio:
return cv2.resize(image, size, interpolation=interpolation)
iw, ih = image.shape[0:2][::-1]
w, h = size
scale = min(w/iw, h/ih)
nw = int(iw*scale)
nh = int(ih*scale)
image = cv2.resize(image, (nw, nh), interpolation=interpolation)
new_image = np.full((size[1], size[0], 3), 128, dtype=np.uint8)
dx = (w-nw)//2
dy = (h-nh)//2
new_image[dy:dy+nh, dx:dx+nw, :] = image
return new_image
def preprocess_frame(frame, input_height, input_width, nchw_shape, keep_aspect_ratio):
in_frame = resize(frame, (input_width, input_height), keep_aspect_ratio)
if nchw_shape:
in_frame = in_frame.transpose((2, 0, 1)) # Change data layout from HWC to CHW
in_frame = np.expand_dims(in_frame, axis=0)
return in_frame
def get_objects(output, net, new_frame_height_width, source_height_width, prob_threshold, is_proportional):
objects = list()
for layer_name, out_blob in output.items():
out_blob = out_blob.buffer.reshape(net.layers[net.layers[layer_name].parents[0]].out_data[0].shape)
layer_params = YoloParams(net.layers[layer_name].params, out_blob.shape[2])
objects += parse_yolo_region(out_blob, new_frame_height_width, source_height_width, layer_params,
prob_threshold, is_proportional)
return objects
def filter_objects(objects, iou_threshold, prob_threshold):
# Filtering overlapping boxes with respect to the --iou_threshold CLI parameter
objects = sorted(objects, key=lambda obj : obj['confidence'], reverse=True)
for i in range(len(objects)):
if objects[i]['confidence'] == 0:
continue
for j in range(i + 1, len(objects)):
if intersection_over_union(objects[i], objects[j]) > iou_threshold:
objects[j]['confidence'] = 0
return tuple(obj for obj in objects if obj['confidence'] >= prob_threshold)
def async_callback(status, callback_args):
request, frame_id, frame_mode, frame, start_time, completed_request_results, empty_requests, \
mode, event, callback_exceptions = callback_args
try:
if status != 0:
raise RuntimeError('Infer Request has returned status code {}'.format(status))
completed_request_results[frame_id] = (frame, request.output_blobs, start_time, frame_mode == mode.current)
if mode.current == frame_mode:
empty_requests.append(request)
except Exception as e:
callback_exceptions.append(e)
event.set()
def put_highlighted_text(frame, message, position, font_face, font_scale, color, thickness):
cv2.putText(frame, message, position, font_face, font_scale, (255, 255, 255), thickness + 1) # white border
cv2.putText(frame, message, position, font_face, font_scale, color, thickness)
def await_requests_completion(requests):
for request in requests:
request.wait()
def main():
args = build_argparser().parse_args()
# ------------- 1. Plugin initialization for specified device and load extensions library if specified -------------
log.info("Creating Inference Engine...")
ie = IECore()
config_user_specified = {}
config_min_latency = {}
devices_nstreams = {}
if args.num_streams:
devices_nstreams = {device: args.num_streams for device in ['CPU', 'GPU'] if device in args.device} \
if args.num_streams.isdigit() \
else dict([device.split(':') for device in args.num_streams.split(',')])
if 'CPU' in args.device:
if args.cpu_extension:
ie.add_extension(args.cpu_extension, 'CPU')
if args.number_threads is not None:
config_user_specified['CPU_THREADS_NUM'] = str(args.number_threads)
if 'CPU' in devices_nstreams:
config_user_specified['CPU_THROUGHPUT_STREAMS'] = devices_nstreams['CPU'] \
if int(devices_nstreams['CPU']) > 0 \
else 'CPU_THROUGHPUT_AUTO'
config_min_latency['CPU_THROUGHPUT_STREAMS'] = '1'
if 'GPU' in args.device:
if 'GPU' in devices_nstreams:
config_user_specified['GPU_THROUGHPUT_STREAMS'] = devices_nstreams['GPU'] \
if int(devices_nstreams['GPU']) > 0 \
else 'GPU_THROUGHPUT_AUTO'
config_min_latency['GPU_THROUGHPUT_STREAMS'] = '1'
# -------------------- 2. Reading the IR generated by the Model Optimizer (.xml and .bin files) --------------------
log.info("Loading network")
net = ie.read_network(args.model, os.path.splitext(args.model)[0] + ".bin")
# ---------------------------------- 3. Load CPU extension for support specific layer ------------------------------
if "CPU" in args.device:
supported_layers = ie.query_network(net, "CPU")
not_supported_layers = [l for l in net.layers.keys() if l not in supported_layers]
if len(not_supported_layers) != 0:
log.error("Following layers are not supported by the plugin for specified device {}:\n {}".
format(args.device, ', '.join(not_supported_layers)))
log.error("Please try to specify cpu extensions library path in sample's command line parameters using -l "
"or --cpu_extension command line argument")
sys.exit(1)
assert len(net.input_info) == 1, "Sample supports only YOLO V3 based single input topologies"
# ---------------------------------------------- 4. Preparing inputs -----------------------------------------------
log.info("Preparing inputs")
input_blob = next(iter(net.input_info))
# Read and pre-process input images
if net.input_info[input_blob].input_data.shape[1] == 3:
input_height, input_width = net.input_info[input_blob].input_data.shape[2:]
nchw_shape = True
else:
input_height, input_width = net.input_info[input_blob].input_data.shape[1:3]
nchw_shape = False
if args.labels:
with open(args.labels, 'r') as f:
labels_map = [x.strip() for x in f]
else:
labels_map = None
input_stream = 0 if args.input == "cam" else args.input
mode = Mode(Modes.USER_SPECIFIED)
cap = cv2.VideoCapture(input_stream)
wait_key_time = 1
# ----------------------------------------- 5. Loading model to the plugin -----------------------------------------
log.info("Loading model to the plugin")
exec_nets = {}
exec_nets[Modes.USER_SPECIFIED] = ie.load_network(network=net, device_name=args.device,
config=config_user_specified,
num_requests=args.num_infer_requests)
exec_nets[Modes.MIN_LATENCY] = ie.load_network(network=net, device_name=args.device.split(":")[-1].split(",")[0],
config=config_min_latency,
num_requests=1)
empty_requests = deque(exec_nets[mode.current].requests)
completed_request_results = {}
next_frame_id = 0
next_frame_id_to_show = 0
mode_info = { mode.current: ModeInfo() }
event = threading.Event()
callback_exceptions = []
# ----------------------------------------------- 6. Doing inference -----------------------------------------------
log.info("Starting inference...")
print("To close the application, press 'CTRL+C' here or switch to the output window and press ESC key")
print("To switch between min_latency/user_specified modes, press TAB key in the output window")
presenter = monitors.Presenter(args.utilization_monitors, 55,
(round(cap.get(cv2.CAP_PROP_FRAME_WIDTH) / 4), round(cap.get(cv2.CAP_PROP_FRAME_HEIGHT) / 8)))
while (cap.isOpened() \
or completed_request_results \
or len(empty_requests) < len(exec_nets[mode.current].requests)) \
and not callback_exceptions:
if next_frame_id_to_show in completed_request_results:
frame, output, start_time, is_same_mode = completed_request_results.pop(next_frame_id_to_show)
next_frame_id_to_show += 1
if is_same_mode:
mode_info[mode.current].frames_count += 1
objects = get_objects(output, net, (input_height, input_width), frame.shape[:-1], args.prob_threshold,
args.keep_aspect_ratio)
objects = filter_objects(objects, args.iou_threshold, args.prob_threshold)
if len(objects) and args.raw_output_message:
log.info(" Class ID | Confidence | XMIN | YMIN | XMAX | YMAX | COLOR ")
origin_im_size = frame.shape[:-1]
presenter.drawGraphs(frame)
for obj in objects:
# Validation bbox of detected object
obj['xmax'] = min(obj['xmax'], origin_im_size[1])
obj['ymax'] = min(obj['ymax'], origin_im_size[0])
obj['xmin'] = max(obj['xmin'], 0)
obj['ymin'] = max(obj['ymin'], 0)
color = (min(obj['class_id'] * 12.5, 255),
min(obj['class_id'] * 7, 255),
min(obj['class_id'] * 5, 255))
det_label = labels_map[obj['class_id']] if labels_map and len(labels_map) >= obj['class_id'] else \
str(obj['class_id'])
if args.raw_output_message:
log.info(
"{:^9} | {:10f} | {:4} | {:4} | {:4} | {:4} | {} ".format(det_label, obj['confidence'],
obj['xmin'], obj['ymin'], obj['xmax'],
obj['ymax'],
color))
cv2.rectangle(frame, (obj['xmin'], obj['ymin']), (obj['xmax'], obj['ymax']), color, 2)
cv2.putText(frame,
"#" + det_label + ' ' + str(round(obj['confidence'] * 100, 1)) + ' %',
(obj['xmin'], obj['ymin'] - 7), cv2.FONT_HERSHEY_COMPLEX, 0.6, color, 1)
# Draw performance stats over frame
if mode_info[mode.current].frames_count != 0:
fps_message = "FPS: {:.1f}".format(mode_info[mode.current].frames_count / \
(perf_counter() - mode_info[mode.current].last_start_time))
mode_info[mode.current].latency_sum += perf_counter() - start_time
latency_message = "Latency: {:.1f} ms".format((mode_info[mode.current].latency_sum / \
mode_info[mode.current].frames_count) * 1e3)
put_highlighted_text(frame, fps_message, (15, 20), cv2.FONT_HERSHEY_COMPLEX, 0.75, (200, 10, 10), 2)
put_highlighted_text(frame, latency_message, (15, 50), cv2.FONT_HERSHEY_COMPLEX, 0.75, (200, 10, 10), 2)
mode_message = "{} mode".format(mode.current.name)
put_highlighted_text(frame, mode_message, (10, int(origin_im_size[0] - 20)),
cv2.FONT_HERSHEY_COMPLEX, 0.75, (10, 10, 200), 2)
if not args.no_show:
cv2.imshow("Detection Results", frame)
key = cv2.waitKey(wait_key_time)
if key in {ord("q"), ord("Q"), 27}: # ESC key
break
if key == 9: # Tab key
prev_mode = mode.current
mode.next()
await_requests_completion(exec_nets[prev_mode].requests)
empty_requests.clear()
empty_requests.extend(exec_nets[mode.current].requests)
mode_info[prev_mode].last_end_time = perf_counter()
mode_info[mode.current] = ModeInfo()
else:
presenter.handleKey(key)
elif empty_requests and cap.isOpened():
start_time = perf_counter()
ret, frame = cap.read()
if not ret:
if args.loop_input:
cap.open(input_stream)
else:
cap.release()
continue
request = empty_requests.popleft()
# resize input_frame to network size
in_frame = preprocess_frame(frame, input_height, input_width, nchw_shape, args.keep_aspect_ratio)
# Start inference
request.set_completion_callback(py_callback=async_callback,
py_data=(request,
next_frame_id,
mode.current,
frame,
start_time,
completed_request_results,
empty_requests,
mode,
event,
callback_exceptions))
request.async_infer(inputs={input_blob: in_frame})
next_frame_id += 1
else:
event.wait()
if callback_exceptions:
raise callback_exceptions[0]
for mode_value in mode_info.keys():
log.info("")
log.info("Mode: {}".format(mode_value.name))
end_time = mode_info[mode_value].last_end_time if mode_value in mode_info \
and mode_info[mode_value].last_end_time is not None \
else perf_counter()
log.info("FPS: {:.1f}".format(mode_info[mode_value].frames_count / \
(end_time - mode_info[mode_value].last_start_time)))
log.info("Latency: {:.1f} ms".format((mode_info[mode_value].latency_sum / \
mode_info[mode_value].frames_count) * 1e3))
print(presenter.reportMeans())
for exec_net in exec_nets.values():
await_requests_completion(exec_net.requests)
if __name__ == '__main__':
sys.exit(main() or 0)