Skip to content

Latest commit

 

History

History
135 lines (110 loc) · 7.55 KB

README.md

File metadata and controls

135 lines (110 loc) · 7.55 KB

SG-DTA: Stacked Graph Drug-Target Association

Model Overview

Note (2021-17-10): We will public the dataset for this repository after our research is accepted.

Table of contents

  1. Prerequisites
  2. Install
  3. Getting started
  4. Results

1. Prerequisites

2. Install

  • Creating conda environment for the experiment:
conda create -n sgdta python=3.8.11 -y
conda activate sgdta
  • Installing PyTorch, Torchvision and Pytorch Geometric depending on the device you use to run the experiment:
    The following setting, we config environment for CPU and GPU device with Pytorch == 1.7.0, CUDA 11.0.

For CPU version

pip install torch==1.7.0+cu110 torchvision==0.8.0+cu110 torchaudio==0.7.0 -f 
pip install torch-scatter -f https://pytorch-geometric.com/whl/torch-1.7.0+cpu.html
pip install torch-sparse -f https://pytorch-geometric.com/whl/torch-1.7.0+cpu.html
pip install torch-cluster -f https://pytorch-geometric.com/whl/torch-1.7.0+cpu.html
pip install torch-spline-conv -f https://pytorch-geometric.com/whl/torch-1.7.0+cpu.html
pip install torch-geometric==1.6.3 --use-feature=2020-resolver

For GPU version

pip install pytorch==1.7.0 torchvision==0.8.0 torchaudio==0.7.0 cudatoolkit=11.0 -c pytorch
pip install torch-scatter -f https://pytorch-geometric.com/whl/torch-1.7.0+cu110.html
pip install torch-sparse -f https://pytorch-geometric.com/whl/torch-1.7.0+cu110.html
pip install torch-cluster -f https://pytorch-geometric.com/whl/torch-1.7.0+cu110.html
pip install torch-spline-conv -f https://pytorch-geometric.com/whl/torch-1.7.0+cu110.html
pip install torch-geometric==1.6.3 --use-feature=2020-resolver
  • Installing rdkit and other dependencies:
conda install -y -c conda-forge rdkit==2020.09.1
pip install -r requirements.txt

3. Getting started

Setting Datasets

(We will release soon)

Training and Evaluation

  • Training command line:

    python main.py train --train_fold ${fold} --dataset ${dataset} --drug_embedding ${drug_model} --protein_embedding ${protein_model} --network_embedding ${node_embedding_model} --model ${model} --data_type ${data_type} --exp_name ${experiment_name}

    Please go through file main.py to see the detail information of all parameters.

    • Training a model from scratch:

      For example,

      To train model GraphDTA with all KIBA data training and use gat-gcn for drug embedding:

      python main.py train --train_fold 6 --dataset kiba --drug_embedding gat_gcn --protein_embedding embedding --model graphdta --model_data dataDTA --exp_name "Graph_kiba_gat_gcn"

      To train model SG-DTA with all KIBA data training, and gat-gcn for drug embedding, CNN for target protein, GCN for drug-target network:

      python main.py train --train_fold 6 --dataset kiba --drug_embedding gat_gcn --protein_embedding embedding --model graphdta --network_embedding gcn --model_data dataDTA --exp_name "SGDTA_kiba_gat_gcn_GCN"
    • Training a model using pretrained_weight: Please config the "exp_name" equivalently to the folder name downloaded from google drive.

      For example,

      To train model GraphDTA with all KIBA data and gat_gcn for drug embedding using pretrained "Graph_kiba_gat_gcn"

      python main.py train --resume_fold 6  --dataset kiba --drug_embedding gat_gcn --protein_embedding embedding --model graphdta --data_type dataDTA --exp_name "Graph_kiba_gat_gcn"

      To train model SG-DTA with all KIBA data and gat-gcn for drug embedding, CNN for target protein, GCN for drug-target network

      python main.py train --resume_fold 6 --dataset kiba --drug_embedding gat_gcn --protein_embedding embedding --model graphdta --network_embedding gcn --model_data dataDTA --exp_name "SGDTA_kiba_gat_gcn_GCN"
  • Evaluating command line:

    python main.py test --test_on_fold ${fold} --dataset {dataset} --drug_embedding ${drug_model} --protein_embedding ${protein_model} --network_embedding ${node_embedding_model} --model ${model} --data_type dataDTA --exp_name ${experiment_name}

    In order to evaluate model, setting consistently the "exp_name" equivalently to the folder name of trained model.

    For example,

    To evaluate DeepDTA model with DAVIS dataset, and CNN for drug_embedding, CCN for protein_embedding:

    python main.py test --test_on_fold 6 --dataset davis --graph_embedding embedding --protein_embedding embeddingdeep --network_embedding gcn --model deepdta --data_type dataDTA --exp_name "Deep_davis_fulldata"

    To evaluate SG-DTA model with DAVIS dataset, and CNN for drug, CNN for protein, GCN for drug_target network:

    python main.py test --test_on_fold 6 --dataset davis --graph_embedding embedding --protein_embedding embeddingdeep --network_embedding gcn --model sgdta --data_type dataDTA --exp_name "Deep_davis_gcn_fulldata"

4. Results

We use 4 evaluation metrics to perform our experiments (evaluation_metric.py) on two famous datasets Davis and Kiba. The notation D & T + DTN of architecture is the way how to represent drug, target and drug-target network feature vectors respectively. The full result and explanation of the results are reported in the paper.

Davis

Method Architecture (D & T + DTN) MSE Pearson Spearman CI
DeepDTA CNN & CNN 0.24050 0.84260 0.69339 0.88618
SG-DTA (our) CNN & CNN + GAT-GCN 0.21762 0.85495 0.70868 0.89600
GraphDTA GIN & CNN 0.22818 0.84649 0.70839 0.89580
SG-DTA (our) GIN & CNN + GAT 0.21936 0.85246 0.71903 0.90192
DGraphDTA GCN & GCN 0.21238 0.85850 0.70696 0.89619
SG-DTA (our) GCN & GCN + GAT 0.20946 0.86081 0.72415 0.90580

Kiba

Method Architecture (D & T + DTN) MSE Pearson Spearman CI
DeepDTA CNN & CNN 0.14362 0.88816 0.88181 0.88865
SG-DTA (our) CNN & CNN + GAT 0.14285 0.88890 0.88790 0.89549
GraphDTA GAT-GCN & CNN 0.13912 0.89180 0.88389 0.88929
SG-DTA (our) GIN & CNN + GAT 0.12714 0.90223 0.89778 0.90211
DGraphDTA GCN & GCN 0.12608 0.90283 0.89566 0.90089
SG-DTA (our) GCN & GCN + GAT 0.12505 0.90375 0.89772 0.9031