-
Notifications
You must be signed in to change notification settings - Fork 0
/
custom_baseline_model.py
166 lines (148 loc) · 6.17 KB
/
custom_baseline_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import logging
import numpy as np
import gym
from ray.rllib.models.torch.torch_modelv2 import TorchModelV2
from ray.rllib.models.torch.misc import SlimFC, AppendBiasLayer, normc_initializer
from ray.rllib.utils.annotations import override
from ray.rllib.utils.framework import try_import_torch
from ray.rllib.utils.typing import Dict, TensorType, List, ModelConfigDict
torch, nn = try_import_torch()
logger = logging.getLogger(__name__)
class CustomBaselineModel(TorchModelV2, nn.Module):
"""This is purely a dummy model, since the action is independently samped from the Network here.
The model only exists as a placeholder so that the RLLib functionalities can be used"""
def __init__(
self,
obs_space: gym.spaces.Space,
action_space: gym.spaces.Space,
num_outputs: int,
model_config: ModelConfigDict,
name: str,
):
TorchModelV2.__init__(
self, obs_space, action_space, num_outputs, model_config, name
)
nn.Module.__init__(self)
hiddens = list(model_config.get("fcnet_hiddens", [])) + list(
model_config.get("post_fcnet_hiddens", [])
)
activation = model_config.get("fcnet_activation")
if not model_config.get("fcnet_hiddens", []):
activation = model_config.get("post_fcnet_activation")
no_final_linear = model_config.get("no_final_linear")
self.vf_share_layers = model_config.get("vf_share_layers")
self.free_log_std = model_config.get("free_log_std")
# Generate free-floating bias variables for the second half of
# the outputs.
if self.free_log_std:
assert num_outputs % 2 == 0, (
"num_outputs must be divisible by two",
num_outputs,
)
num_outputs = num_outputs // 2
layers = []
prev_layer_size = int(np.product(obs_space.shape))
self._logits = None
self.dict_polytope = model_config.get("custom_model_config").get("constraint_data", None)
self.constraints_conditional_minkowski_encoding_type = model_config.get("custom_model_config").get("constraints_conditional_minkowski_encoding_type", None)
# Create layers 0 to second-last.
for size in hiddens[:-1]:
layers.append(
SlimFC(
in_size=prev_layer_size,
out_size=size,
initializer=normc_initializer(1.0),
activation_fn=activation,
)
)
prev_layer_size = size
# The last layer is adjusted to be of size num_outputs, but it's a
# layer with activation.
if no_final_linear and num_outputs:
layers.append(
SlimFC(
in_size=prev_layer_size,
out_size=num_outputs,
initializer=normc_initializer(1.0),
activation_fn=activation,
)
)
prev_layer_size = num_outputs
# Finish the layers with the provided sizes (`hiddens`), plus -
# iff num_outputs > 0 - a last linear layer of size num_outputs.
else:
if len(hiddens) > 0:
layers.append(
SlimFC(
in_size=prev_layer_size,
out_size=hiddens[-1],
initializer=normc_initializer(1.0),
activation_fn=activation,
)
)
prev_layer_size = hiddens[-1]
if num_outputs:
self._logits = SlimFC(
in_size=prev_layer_size,
out_size=num_outputs,
initializer=normc_initializer(0.01),
activation_fn=None,
)
else:
self.num_outputs = ([int(np.product(obs_space.shape))] + hiddens[-1:])[
-1
]
# Layer to add the log std vars to the state-dependent means.
if self.free_log_std and self._logits:
self._append_free_log_std = AppendBiasLayer(num_outputs)
self._hidden_layers = nn.Sequential(*layers)
self._value_branch_separate = None
if not self.vf_share_layers:
# Build a parallel set of hidden layers for the value net.
prev_vf_layer_size = int(np.product(obs_space.shape))
vf_layers = []
for size in hiddens:
vf_layers.append(
SlimFC(
in_size=prev_vf_layer_size,
out_size=size,
activation_fn=activation,
initializer=normc_initializer(1.0),
)
)
prev_vf_layer_size = size
self._value_branch_separate = nn.Sequential(*vf_layers)
self._value_branch = SlimFC(
in_size=prev_layer_size,
out_size=1,
initializer=normc_initializer(0.01),
activation_fn=None,
)
# Holds the current "base" output (before logits layer).
self._features = None
# Holds the last input, in case value branch is separate.
self._last_flat_in = None
@override(TorchModelV2)
def forward(
self,
input_dict: Dict[str, TensorType],
state: List[TensorType],
seq_lens: TensorType,
) -> (TensorType, List[TensorType]):
obs = input_dict["obs_flat"].float()
self._last_flat_in = obs.reshape(obs.shape[0], -1)
self._features = self._hidden_layers(self._last_flat_in)
logits = self._logits(self._features) if self._logits else self._features
if self.free_log_std:
logits = self._append_free_log_std(logits)
return logits, state
@override(TorchModelV2)
def value_function(self) -> TensorType:
assert self._features is not None, "must call forward() first"
if self._value_branch_separate:
out = self._value_branch(
self._value_branch_separate(self._last_flat_in)
).squeeze(1)
else:
out = self._value_branch(self._features).squeeze(1)
return out