-
Notifications
You must be signed in to change notification settings - Fork 0
/
risk_cost_vf_custom_model.py
281 lines (245 loc) · 11.3 KB
/
risk_cost_vf_custom_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
import logging
import numpy as np
import gym
from ray.rllib.models.torch.torch_modelv2 import TorchModelV2
from ray.rllib.models.torch.misc import SlimFC, AppendBiasLayer, normc_initializer
from ray.rllib.utils.annotations import override
from ray.rllib.utils.framework import try_import_torch
from ray.rllib.utils.typing import Dict, TensorType, List, ModelConfigDict
from ray.rllib.models.catalog import ModelCatalog
from ray.rllib.policy.torch_policy_v2 import TorchPolicyV2
from ray.rllib.models.modelv2 import ModelV2
from moment_model import MomentModel
from moment_model_transformer import MomentTransformerModel
torch, nn = try_import_torch()
logger = logging.getLogger(__name__)
class CostValueFunctionCustomModel(TorchModelV2, nn.Module):
"""Generic fully connected network with multiple heads to estimate the COST value functions """
def __init__(
self,
obs_space: gym.spaces.Space,
action_space: gym.spaces.Space,
num_outputs: int,
model_config: ModelConfigDict,
name: str,
):
TorchModelV2.__init__(
self, obs_space, action_space, num_outputs, model_config, name
)
nn.Module.__init__(self)
self.number_assets = int(np.product(action_space.shape))
hiddens = list(model_config.get("fcnet_hiddens", [])) + list(
model_config.get("post_fcnet_hiddens", [])
)
activation = model_config.get("fcnet_activation")
if not model_config.get("fcnet_hiddens", []):
activation = model_config.get("post_fcnet_activation")
no_final_linear = model_config.get("no_final_linear")
self.vf_share_layers = model_config.get("vf_share_layers")
self.free_log_std = model_config.get("free_log_std")
# Generate free-floating bias variables for the second half of
# the outputs.
if self.free_log_std:
assert num_outputs % 2 == 0, (
"num_outputs must be divisible by two",
num_outputs,
)
num_outputs = num_outputs // 2
layers = []
prev_layer_size = int(np.product(obs_space.shape))
self._logits = None
# Create layers 0 to second-last.
for size in hiddens[:-1]:
layers.append(
SlimFC(
in_size=prev_layer_size,
out_size=size,
initializer=normc_initializer(1.0),
activation_fn=activation,
)
)
prev_layer_size = size
# The last layer is adjusted to be of size num_outputs, but it's a
# layer with activation.
if no_final_linear and num_outputs:
layers.append(
SlimFC(
in_size=prev_layer_size,
out_size=num_outputs,
initializer=normc_initializer(1.0),
activation_fn=activation,
)
)
prev_layer_size = num_outputs
# Finish the layers with the provided sizes (`hiddens`), plus -
# iff num_outputs > 0 - a last linear layer of size num_outputs.
else:
if len(hiddens) > 0:
layers.append(
SlimFC(
in_size=prev_layer_size,
out_size=hiddens[-1],
initializer=normc_initializer(1.0),
activation_fn=activation,
)
)
prev_layer_size = hiddens[-1]
if num_outputs:
self._logits = SlimFC(
in_size=prev_layer_size,
out_size=num_outputs,
initializer=normc_initializer(0.01),
activation_fn=None,
)
else:
self.num_outputs = ([int(np.product(obs_space.shape))] + hiddens[-1:])[
-1
]
# Layer to add the log std vars to the state-dependent means.
if self.free_log_std and self._logits:
self._append_free_log_std = AppendBiasLayer(num_outputs)
self._hidden_layers = nn.Sequential(*layers)
self._value_branch_separate = None
if not self.vf_share_layers:
# Build a parallel set of hidden layers for the value net.
prev_vf_layer_size = int(np.product(obs_space.shape))
vf_layers = []
for size in hiddens:
vf_layers.append(
SlimFC(
in_size=prev_vf_layer_size,
out_size=size,
activation_fn=activation,
initializer=normc_initializer(1.0),
)
)
prev_vf_layer_size = size
self._value_branch_separate = nn.Sequential(*vf_layers)
self._value_branch = SlimFC(
in_size=prev_layer_size,
out_size=1,
initializer=normc_initializer(0.01),
activation_fn=None,
)
# Holds the current "base" output (before logits layer).
self._features = None
# Holds the last input, in case value branch is separate.
self._last_flat_in = None
#COST VALUE FUNCTIONS
self.amount_constraints = model_config.get("custom_model_config").get("amount_constraints")
if model_config.get("custom_model_config").get("constraints_conditional_minkowski_encoding_type", None) is not None: # if we have a conditional minkowski encoding
self.amount_helper_constraints = self.amount_constraints
else:
self.amount_helper_constraints = self.amount_constraints*2 # every equalty constraint is converted into two inequality constraints
self.cost_vf_share_layers = model_config.get("custom_model_config").get("cost_vf_share_layers")
self._cost_value_branch_separate_dict = None
if not self.cost_vf_share_layers:
self._cost_value_branch_separate_dict = nn.ModuleDict()
for ctx in range(self.amount_helper_constraints):
# Build a parallel set of hidden layers for the value net.
prev_vf_layer_size = int(np.product(obs_space.shape))
vf_layers = []
for size in hiddens:
vf_layers.append(
SlimFC(
in_size=prev_vf_layer_size,
out_size=size,
activation_fn=activation,
initializer=normc_initializer(1.0),
)
)
prev_vf_layer_size = size
self._cost_value_branch_separate_dict[f'constraint_{ctx}'] = nn.Sequential(*vf_layers)
self._cost_value_branch_dict = nn.ModuleDict()
for ctx in range(self.amount_helper_constraints):
self._cost_value_branch_dict[f'constraint_{ctx}'] = SlimFC(
in_size=prev_layer_size,
out_size=1,
initializer=normc_initializer(0.01),
activation_fn=None,
)
#Optional Risk part
# Introduce risk model
if "custom_model_config" in model_config and "config_moment_model" in model_config.get(
"custom_model_config"):
number_input_assets = self.number_assets
moment_model_config = model_config.get("custom_model_config").get("config_moment_model")
self.moment_model_attention_dim = model_config.get("custom_model_config").get(
"config_moment_model").get(
"attention_dim")
self.use_moment_attention = model_config.get("custom_model_config").get("config_moment_model").get(
"use_moment_attention")
if self.use_moment_attention:
self.moment_submodel = MomentTransformerModel(config_attention_model=moment_model_config,
in_space=obs_space,
number_input_assets=number_input_assets) # action_space=action_space)
else:
self.moment_submodel = MomentModel(config_moment_model=moment_model_config,
in_space=obs_space, action_space=action_space)
else:
print("No moment model currently used")
@override(TorchModelV2)
def forward(
self,
input_dict: Dict[str, TensorType],
state: List[TensorType],
seq_lens: TensorType,
) -> (TensorType, List[TensorType]):
obs = input_dict["obs_flat"].float()
self._last_flat_in = obs.reshape(obs.shape[0], -1)
self._features = self._hidden_layers(self._last_flat_in)
logits = self._logits(self._features) if self._logits else self._features
if self.free_log_std:
logits = self._append_free_log_std(logits)
return logits, state
@override(TorchModelV2)
def value_function(self) -> TensorType:
assert self._features is not None, "must call forward() first"
if self._value_branch_separate:
return self._value_branch(
self._value_branch_separate(self._last_flat_in)
).squeeze(1)
else:
return self._value_branch(self._features).squeeze(1)
def cost_value_function(self, cost_value_function_index) -> TensorType:
"""
Outputs depending on the cost value function index an cost value estimation
:param cost_value_function_index:
:return:
"""
assert self._features is not None, "must call forward() first"
if self._cost_value_branch_separate_dict:
return self._cost_value_branch_dict[f'constraint_{cost_value_function_index}'](
self._cost_value_branch_separate_dict[f'constraint_{cost_value_function_index}'](
self._last_flat_in)).squeeze(1)
else:
return self._cost_value_branch_dict[f'constraint_{cost_value_function_index}'](self._features).squeeze(1)
from helper_functions import calculate_action_dim
def make_risk_model(
policy: TorchPolicyV2, obs_space: gym.spaces.Space,
action_space: gym.spaces.Space,
config: Dict) -> ModelV2:
print("Making COST VF CUSTOM MODEL")
print(f'Model obs space {obs_space}')
print(f'Model action space {action_space}')
#print("--------")
#if isinstance(action_space, gym.spaces.Box):
# #-> for box environment ppo we use normal distribution, i.e. 2 parameter per value
# num_outputs = action_space.shape[0]*2##action_space.n
#else:
# num_outputs = action_space.dim
num_outputs = calculate_action_dim(action_space)
model = ModelCatalog.get_model_v2(
obs_space=obs_space,
action_space=action_space,
num_outputs=num_outputs,#action_space.n,
model_config=config["model"],
framework=config["framework"],
# Providing the `model_interface` arg will make the factory
# wrap the chosen default model with our new model API class
# (DummyCustomModel). This way, both `forward` and `get_q_values`
# are available in the returned class.
model_interface=CostValueFunctionCustomModel,
name="cost_value_function_model",
)
return model