-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathBacktesterLoop.py
158 lines (128 loc) · 5.78 KB
/
BacktesterLoop.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
from __future__ import print_function
import pprint
try:
import Queue as queue
except ImportError:
import queue
import time
from Events import MarketEvent
from Events import SignalEvent
from Events import OrderEvent
from Events import FillEvent
class Backtest(object):
"""
Encapsulates the settings and components for carrying out
an event-driven backtest.
"""
def __init__(self, data_dir, symbol_list, initial_capital,
heartbeat, start_date, end_date, interval,
data_handler, execution_handler, portfolio, strategy
):
"""
Initialises the backtest
Parameters:
data_dir - The hard root to the CSV data directory.
symbol_list - The list of symbol strings.
initial_capital - The starting capital for the portfolio.
heartbeat - Backtest "heartbeat" in seconds
start_date - The start datetime of the strategy.
end_date - The end datetime of the strategy
interval - Interval for the data
data_handler - (Class) Handles the market data feed.
execution_handler - (Class) Handles the orders/fills for trades.
portfolio - (Class) Keeps track of portfolio current and prior positions.
strategy - (Class) Generates signals based on market data.
"""
self.data_dir = data_dir
self.symbol_list = symbol_list
self.initial_capital = initial_capital
self.heartbeat = heartbeat
self.start_date = start_date
self.end_date = end_date
self.interval = interval
self.data_handler_cls = data_handler
self.execution_handler_cls = execution_handler
self.portfolio_cls = portfolio
self.strategy_cls = strategy
self.events = queue.Queue()
self.signals = 0
self.orders = 0
self.fills = 0
self.num_strats = 1
self._generate_trading_instances()
def _generate_trading_instances(self):
"""
Generates the trading instance objects from
their class types.
"""
print("Creating DataHandler, Strategy, Portfolio and ExecutionHandler")
# Select data handler if from HistoricCSV file or from Yahoo Finance
if self.data_handler_cls.__name__ == 'HistoricCSVDataHandler':
self.data_handler = self.data_handler_cls(self.events, self.data_dir, self.symbol_list)
# TODO --> Implement a better selection mode
else:
self.data_handler = self.data_handler_cls(self.events, self.symbol_list, self.interval,
self.start_date, self.end_date)
# similar, here the strategy class could have different type of strategies (vol clustering, intraday, etc)
self.strategy = self.strategy_cls(self.data_handler, self.events)
self.portfolio = self.portfolio_cls(self.data_handler, self.events, self.start_date, self.initial_capital)
self.execution_handler = self.execution_handler_cls(self.events)
def _run_backtest(self):
"""
Executes the backtest. The backtest is implemented on an event driven architecture, with 2 infinite while loop
The outer loop runs as long as the data can be updated from the source. If historical data after iterator
updates the last "bar", the while loop will break.
The inner loop corresponds to the events added and popped from a queue. As long as the queue is not empty,
it will keep running and being updated based on the different events realized
After each outer iteration, the system is put to sleep by the heartbeat time. When receiving live datafeed,
it is important to get the data at a precise time.
"""
i = 0
while True:
i += 1
print(i)
# Update the market bars
if self.data_handler.continue_backtest:
self.data_handler.update_bars()
else:
break
# Handle the events
while True:
try:
event = self.events.get(False)
except queue.Empty:
break
else:
if event is not None:
if isinstance(event, MarketEvent):
self.strategy.calculate_signals(event)
self.portfolio.update_timeindex(event)
elif isinstance(event, SignalEvent):
self.signals += 1
self.portfolio.update_signal(event)
elif isinstance(event, OrderEvent):
self.orders += 1
self.execution_handler.execute_order(event)
elif isinstance(event, FillEvent):
self.fills += 1
self.portfolio.update_fill(event)
time.sleep(self.heartbeat)
def _output_performance(self):
"""
Outputs the strategy performance from the backtest.
"""
self.portfolio.create_equity_curve_dataframe()
print("Creating summary stats...")
stats = self.portfolio.output_summary_stats()
print("Creating equity curve...")
print(self.portfolio.equity_curve.tail(10))
pprint.pprint(stats)
print("Signals: %s" % self.signals)
print("Orders: %s" % self.orders)
print("Fills: %s" % self.fills)
def simulate_trading(self):
"""
Simulates the backtest and outputs portfolio performance.
"""
self._run_backtest()
self._output_performance()