-
Notifications
You must be signed in to change notification settings - Fork 5
/
mainfile_classify.py
173 lines (142 loc) · 4.45 KB
/
mainfile_classify.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
# -*- coding: utf-8 -*-
# -*- coding: utf-8 -*-
import warnings
warnings.filterwarnings("ignore")
import numpy as np
import models as mod
import utils_classify as cfg
import keras.backend as K
K.set_image_dim_ordering('tf')
from keras.callbacks import EarlyStopping, ModelCheckpoint,TensorBoard
import os
import tensorflow as tf
import prepare as p
import scipy
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "1"
import keras.backend.tensorflow_backend as KTF
gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.1)
sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options))
KTF.set_session(sess)
np.random.seed(1234)
print('imported')
num_classes=len(cfg.labels)
from sklearn import metrics
n1 = [0,0,0]
fe_fd = [0,0,0]
fe_fd_e = [0,0,0]
text = [0,0,0]
tr_X = [0,0,0]
tr_y = [0,0,0]
te_X = [0,0,0]
te_y = [0,0,0]
i=-1 #Init with 0 indexing
for fetur in cfg.feature:
# Fetching training and testing data of all the features sequentially
print fetur
i+=1
n1[i] = p.get_dimension(fetur)
fe_fd[i],fe_fd_e[i],text[i]=p.get_feature(fetur)
tr_X[i], tr_y[i] = p.tGetAllData( fe_fd[i], cfg.meta_train_csv, cfg.agg_num, cfg.hop ,fetur)
te_X[i],te_y[i] = p.tGetAllData( fe_fd_e[i], cfg.meta_test_csv, cfg.agg_num, cfg.hop ,fetur)
####################################### Reshapes and fetching training and testing Data #############################
tr_X0=np.array(tr_X[0])
tr_X1=np.array(tr_X[1])
tr_X2=np.array(tr_X[2])
tr_y2=np.array(tr_y[2])
te_X0=np.array(te_X[0])
te_X1=np.array(te_X[1])
te_X2=np.array(te_X[2])
te_y2=np.array(te_y[2])
X0=te_X0
X1=te_X1
X2=te_X2
'''
1. Reshaped first dimension of the array to accordingly map feature frame.
2. Reshaped last dimension of the array for every feature to have same frame size for the model
to concatenate over the feature axis to generate an array of shape (15,15) // (agg_num,agg_num)
'''
new_trX0=np.zeros([301860,10, 40,1])
j=0
for i in range(len(tr_X0)):
new_trX0[j]=tr_X0[i]
new_trX0[j+1]=tr_X0[i]
j+=2
new_trX2=np.zeros([301860,10, 60, 1])
j=0
for i in range(len(tr_X2)):
new_trX2[j]=tr_X2[i]
new_trX2[j+1]=tr_X2[i]
j+=2
tr_X0=new_trX0
tr_X2=new_trX2
## testing
new_teX0=np.zeros([258,10, 40, 1])
j=0
for i in range(len(X0)):
new_teX0[j]=X0[i]
new_teX0[j+1]=X0[i]
j+=2
new_teX2=np.zeros([258, 10, 60, 1])
j=0
for i in range(len(X2)):
new_teX2[j]=X2[i]
new_teX2[j+1]=X2[i]
j+=2
X0=new_teX0
X2=new_teX2
dimx0=tr_X0.shape[-3]
dimx1=tr_X1.shape[-3]
dimx2=tr_X2.shape[-3]
dimy0=tr_X0.shape[-2]
dimy1=tr_X1.shape[-2]
dimy2=tr_X2.shape[-2]
lrmodel = mod.ensemble(num_classes = num_classes, dimx0 = dimx0, dimy0 = dimy0, dimx1 = dimx1, dimy1 = dimy1,dimx2 = dimx2, dimy2 = dimy2)
tbcallbacks = [EarlyStopping(monitor='val_mean_squared_error', patience=3),
ModelCheckpoint(filepath='model.h5', monitor='val_mean_squared_error', save_best_only=True),TensorBoard(log_dir='./logs', write_graph=True, write_images=True)]
lrmodel.fit([tr_X0,tr_X1,tr_X2],tr_y2,batch_size=150,epochs=20,verbose=2,
validation_data=([X0,X1,X2],te_y2),callbacks=tbcallbacks)
lrmodel.save('model.h5')
'''
Evaluation Script
'''
y=[]
y_pred_new = []
class_eer=[]
p_y_pred = lrmodel.predict([X0,X1,X2]) # probability, size: (n_block,label)
for i in range(0,len(p_y_pred),258):
y_pred = np.mean(p_y_pred[i:i+258],axis=0)
y_pred_new.append(y_pred)
y.append(te_y2[i].tolist())
y_pred_new, y = np.array(y_pred_new), np.array(y)
print y_pred_new.shape
print y.shape
preds = np.argmax( y_pred_new, axis=-1 ) # size: (n_block)
b = scipy.stats.mode(preds) # Finding the maximum value out of the array for predicting the label
pred = int( b[0] )
truth = open(cfg.eval_txt,'r').readlines()
pred.sort()
truth.sort()
pred = [i.split('\t')[1].split('\n')[0]for i in pred]
truth = [i.split('\t')[1]for i in truth]
met = metrics.classification_report(truth,pred)
val = met.split('\n')
print '\n\n'
for i in val:
if len(i)>0:
print i
print '\n\n'
pos,neg=0,0
for i in range(0,len(pred)):
if pred[i] == truth[i]:
pos = pos+1
else:
neg = neg+1
print "\n\n ********************* Accuracy ********************* \n"
print "correctly classified --> ",pos
print "not correctly classified -->",neg
print "percentage(%) accuracy --> ",(float(pos)/float(len(pred)))*100
acc=(float(pos)/float(len(pred)))*100
print(pred)
print(truth)
print(acc)