From 0cc9ad9a7e5338f4ae6bdce717060c36769794f4 Mon Sep 17 00:00:00 2001 From: D2Hydro <43996424+d2hydro@users.noreply.github.com> Date: Mon, 26 Feb 2024 10:56:28 +0100 Subject: [PATCH] Rws network (#67) All code to create the hws and lhm 2024.2.X model-versions. @visr, curious to your thoughts on how we merge models. I resetting a model index and concatting multiple models is defined here https://github.com/Deltares/Ribasim-NL/blob/RWS-network/src/ribasim_nl/ribasim_nl/reset_index.py https://github.com/Deltares/Ribasim-NL/blob/RWS-network/src/ribasim_nl/ribasim_nl/concat.py For that I need to know tables with node_id columns from ribasim. Would be great if I could read that from the module directly instead of having my own global variable: https://github.com/Deltares/Ribasim-NL/blob/1262ebd23c24c20aac736766c469251c6aee0f2b/src/ribasim_nl/ribasim_nl/model.py#L11-L22 --------- Co-authored-by: ngoorden <49673619+ngoorden@users.noreply.github.com> Co-authored-by: Martijn Visser --- notebooks/nl-kunstwerken.ipynb | 2 +- .../rijkswaterstaat/1_create_bathymetrie.py | 236 ++++++ .../rijkswaterstaat/2_krw_naar_basins.ipynb | 174 +++++ notebooks/rijkswaterstaat/3__kunstwerk.py | 215 ++++++ notebooks/rijkswaterstaat/4_build_model.py | 647 +++++++++++++++++ notebooks/rijkswaterstaat/5_add_control.py | 178 +++++ notebooks/rijkswaterstaat/6_netwerk.py | 243 +++++++ .../rijkswaterstaat/7_upload_hws_model.py | 7 + notebooks/rijkswaterstaat/netwerk.py | 84 --- notebooks/samenvoegen_modellen.py | 218 ++++++ notebooks/samenvoegen_overig.py | 162 +++++ pixi.lock | 666 ++++++++++++++++- pixi.toml | 4 +- ruff.toml | 2 +- src/ribasim_nl/ribasim_nl/__init__.py | 3 +- src/ribasim_nl/ribasim_nl/case_conversions.py | 13 + src/ribasim_nl/ribasim_nl/cloud.py | 9 +- src/ribasim_nl/ribasim_nl/concat.py | 77 ++ .../ribasim_nl/data/styles/links.qml | 620 ++++++++++++++++ .../ribasim_nl/data/styles/links.sld | 34 + .../ribasim_nl/data/styles/nodes.qml | 632 ++++++++++++++++ .../ribasim_nl/data/styles/nodes.sld | 115 +++ src/ribasim_nl/ribasim_nl/discrete_control.py | 46 ++ src/ribasim_nl/ribasim_nl/geodataframe.py | 100 ++- src/ribasim_nl/ribasim_nl/model.py | 142 ++++ src/ribasim_nl/ribasim_nl/network.py | 676 +++++++++++++++--- src/ribasim_nl/ribasim_nl/raster.py | 177 +++++ src/ribasim_nl/ribasim_nl/rating_curve.py | 20 + src/ribasim_nl/ribasim_nl/reset_index.py | 46 ++ src/ribasim_nl/ribasim_nl/styles.py | 124 ++++ src/ribasim_nl/ribasim_nl/tables.py | 99 +++ src/ribasim_nl/ribasim_nl/verdeelsleutels.py | 110 +++ src/ribasim_nl/tests/data/osm_lines.gpkg | Bin 0 -> 131072 bytes src/ribasim_nl/tests/test_network.py | 54 +- src/ribasim_nl/tests/test_tables.py | 20 + 35 files changed, 5734 insertions(+), 221 deletions(-) create mode 100644 notebooks/rijkswaterstaat/1_create_bathymetrie.py create mode 100644 notebooks/rijkswaterstaat/2_krw_naar_basins.ipynb create mode 100644 notebooks/rijkswaterstaat/3__kunstwerk.py create mode 100644 notebooks/rijkswaterstaat/4_build_model.py create mode 100644 notebooks/rijkswaterstaat/5_add_control.py create mode 100644 notebooks/rijkswaterstaat/6_netwerk.py create mode 100644 notebooks/rijkswaterstaat/7_upload_hws_model.py delete mode 100644 notebooks/rijkswaterstaat/netwerk.py create mode 100644 notebooks/samenvoegen_modellen.py create mode 100644 notebooks/samenvoegen_overig.py create mode 100644 src/ribasim_nl/ribasim_nl/case_conversions.py create mode 100644 src/ribasim_nl/ribasim_nl/concat.py create mode 100644 src/ribasim_nl/ribasim_nl/data/styles/links.qml create mode 100644 src/ribasim_nl/ribasim_nl/data/styles/links.sld create mode 100644 src/ribasim_nl/ribasim_nl/data/styles/nodes.qml create mode 100644 src/ribasim_nl/ribasim_nl/data/styles/nodes.sld create mode 100644 src/ribasim_nl/ribasim_nl/discrete_control.py create mode 100644 src/ribasim_nl/ribasim_nl/model.py create mode 100644 src/ribasim_nl/ribasim_nl/raster.py create mode 100644 src/ribasim_nl/ribasim_nl/rating_curve.py create mode 100644 src/ribasim_nl/ribasim_nl/reset_index.py create mode 100644 src/ribasim_nl/ribasim_nl/styles.py create mode 100644 src/ribasim_nl/ribasim_nl/tables.py create mode 100644 src/ribasim_nl/ribasim_nl/verdeelsleutels.py create mode 100644 src/ribasim_nl/tests/data/osm_lines.gpkg create mode 100644 src/ribasim_nl/tests/test_tables.py diff --git a/notebooks/nl-kunstwerken.ipynb b/notebooks/nl-kunstwerken.ipynb index dc881b2..95cb1bd 100644 --- a/notebooks/nl-kunstwerken.ipynb +++ b/notebooks/nl-kunstwerken.ipynb @@ -192,7 +192,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.12.0" + "version": "3.12.1" } }, "nbformat": 4, diff --git a/notebooks/rijkswaterstaat/1_create_bathymetrie.py b/notebooks/rijkswaterstaat/1_create_bathymetrie.py new file mode 100644 index 0000000..7f03efc --- /dev/null +++ b/notebooks/rijkswaterstaat/1_create_bathymetrie.py @@ -0,0 +1,236 @@ +# %% +import itertools +import math +from functools import partial + +import fiona +import geopandas as gpd +import numpy as np +import rasterio +from geocube.api.core import make_geocube +from geocube.rasterize import rasterize_points_griddata +from rasterio import features, merge # noqa: F401 +from rasterio.enums import Resampling +from rasterio.transform import from_origin +from rasterio.windows import from_bounds +from ribasim_nl import CloudStorage +from shapely.geometry import MultiPolygon, box + +cloud = CloudStorage() + + +out_dir = cloud.joinpath("Rijkswaterstaat", "verwerkt", "bathymetrie") +out_dir.mkdir(exist_ok=True) +baseline_file = cloud.joinpath( + "baseline-nl_land-j23_6-v1", "baseline.gdb" +) # dit bestand is read-only voor D2HYDRO ivm verwerkersovereenkomst +layer = "bedlevel_points" + +krw_poly_gpkg = cloud.joinpath( + "Basisgegevens", "KRW", "krw_oppervlaktewaterlichamen_nederland_vlakken.gpkg" +) + +bathymetrie_nl = cloud.joinpath("Rijkswaterstaat", "aangeleverd", "bathymetrie") + +res = 5 +tile_size = 10000 +bounds = (0, 300000, 320000, 660000) +nodata = -9999 + +# %% + +datasets = [rasterio.open(i) for i in bathymetrie_nl.glob("*NAP.tif")] + +data, transform = rasterio.merge.merge( + datasets, bounds=bounds, res=(res, res), nodata=nodata +) + +data = np.where(data != nodata, data * 100, nodata).astype("int16") + +profile = { + "driver": "GTiff", + "dtype": "int16", + "nodata": nodata, + "width": data.shape[2], + "height": data.shape[1], + "count": 1, + "crs": 28992, + "transform": transform, + "blockxsize": 256, + "blockysize": 256, + "compress": "deflate", +} + +with rasterio.open(out_dir / "bathymetrie-nl.tif", mode="w", **profile) as dst: + dst.write(data) + dst.build_overviews([5, 20], Resampling.average) + dst.update_tags(ns="rio_overview", resampling="average") + dst.scales = (0.01,) + + +# %% +print("read mask") +water_geometries = gpd.read_file(out_dir / "water-mask.gpkg", engine="pyogrio") +with fiona.open(baseline_file, layer=layer) as src: + xmin, ymin, xmax, ymax = src.bounds + xmin = math.floor(xmin / tile_size) * tile_size + ymin = math.floor(ymin / tile_size) * tile_size + xmax = math.ceil(xmax / tile_size) * tile_size + ymax = math.ceil(ymax / tile_size) * tile_size + xmins = list(range(xmin, xmax, tile_size)) + ymins = list(range(ymin, ymax, tile_size)) + xymins = itertools.product(xmins, ymins) + transform = from_origin(xmin, ymax, res, res) + +# %% +with rasterio.open( + out_dir / f"{layer}_{xmin}_{ymin}_{xmax}_{ymax}.tif", + mode="w", + driver="GTiff", + dtype="int16", + nodata=-32768.0, + count=1, + crs=28992, + compress="lzw", + tiled=True, + width=int((xmax - xmin) / res), + height=int((ymax - ymin) / res), + transform=transform, +) as dst: + profile = dst.profile + dst_bounds = dst.bounds + for xmin, ymin in xymins: + xmax = xmin + tile_size + ymax = ymin + tile_size + + print(f"doing {xmin}, {ymin}, {xmax}, {ymax}") + + bounds = (xmin, ymin, xmax, ymax) + area_poly = box(*bounds) + print("select water-mask geometries") + water_geometries_select = water_geometries[ + water_geometries.intersects(area_poly) + ] + if not water_geometries_select.empty: + area_poly_buffer = area_poly.buffer(res * 4) + print("read points") + gdf = gpd.read_file( + baseline_file, + layer=layer, + engine="pyogrio", + bbox=area_poly_buffer.bounds, + ) + gdf = gdf.loc[(gdf.ELEVATION > -60) & (gdf.ELEVATION < 50)] + + if not gdf.empty: + # we drop duplicated points within the same meter + print("drop duplicates") + gdf["x"] = gdf.geometry.x.astype(int) + gdf["y"] = gdf.geometry.y.astype(int) + gdf.drop_duplicates(["x", "y"], inplace=True) + + print("make cube") + cube = make_geocube( + gdf, + measurements=["ELEVATION"], + resolution=(res, -res), + rasterize_function=partial( + rasterize_points_griddata, method="linear" + ), + interpolate_na_method="nearest", + ) + + print("scale cube") + cube["ELEVATION"] = (cube.ELEVATION * 100).astype("int16") + cube.ELEVATION.attrs["_FillValue"] = -32768 + cube.ELEVATION.attrs["scale_factor"] = 0.01 + + print("clip cube") + mask = water_geometries_select.geometry.unary_union.intersection( + area_poly + ) + convex_hull = gdf.unary_union.convex_hull + if isinstance(mask, MultiPolygon): + mask = [ + i.intersection(convex_hull) + for i in mask.geoms + if i.intersects(convex_hull) + ] + + else: # is one polygon + mask = [mask.intersection(convex_hull)] + + cube = cube.rio.clip(mask) + + if cube.ELEVATION.size > 0: + print("add to tiff") + window = from_bounds(*cube.rio.bounds(), transform) + dst.write( + np.fliplr(np.flipud(cube.ELEVATION)), window=window, indexes=1 + ) + else: + print("no cube.ELEVATION points within water-mask") + else: + print("no samples within boundary") + else: + print("no water-mask within bounds") + + dst.build_overviews([5, 20], Resampling.average) + dst.update_tags(ns="rio_overview", resampling="average") + dst.scales = (0.01,) + +# %% + +# read bathymetrie-nl and its spatial characteristics +with rasterio.open(out_dir / "bathymetrie-nl.tif") as src: + bathymetry_nl_data = src.read(1) + bathymetry_nl_data = np.where( + bathymetry_nl_data == src.nodata, nodata, bathymetry_nl_data + ) + bounds = src.bounds + transform = src.transform + profile = src.profile + scales = src.scales + + +with rasterio.open(out_dir / "bedlevel_points_-20000_300000_320000_660000.tif") as src: + window = from_bounds(*bounds, src.transform) + baseline_data = src.read(1, window=window) + baseline_data = np.where(baseline_data == src.nodata, nodata, baseline_data) + + +# data = baseline_data + +shapes = (i.geometry for i in water_geometries.itertuples() if i.baseline) + +baseline_mask = rasterio.features.rasterize( + shapes, + out_shape=bathymetry_nl_data.shape, + transform=transform, + fill=0, + default_value=1, + all_touched=True, + dtype="int8", +).astype(bool) + +data = np.where(baseline_mask, baseline_data, bathymetry_nl_data) + +profile = { + "driver": "GTiff", + "dtype": "int16", + "nodata": nodata, + "width": data.shape[1], + "height": data.shape[0], + "count": 1, + "crs": 28992, + "transform": transform, + "blockxsize": 256, + "blockysize": 256, + "compress": "deflate", +} + +with rasterio.open(out_dir / "bathymetrie-merged.tif", mode="w", **profile) as dst: + dst.write(data, 1) + dst.build_overviews([5, 20], Resampling.average) + dst.update_tags(ns="rio_overview", resampling="average") + dst.scales = (0.01,) diff --git a/notebooks/rijkswaterstaat/2_krw_naar_basins.ipynb b/notebooks/rijkswaterstaat/2_krw_naar_basins.ipynb new file mode 100644 index 0000000..6ee162e --- /dev/null +++ b/notebooks/rijkswaterstaat/2_krw_naar_basins.ipynb @@ -0,0 +1,174 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import geopandas as gpd\n", + "import pandas as pd\n", + "from ribasim_nl import CloudStorage\n", + "from ribasim_nl.geodataframe import join_by_poly_overlay, split_basins\n", + "from ribasim_nl.raster import sample_level_area\n", + "\n", + "cloud = CloudStorage()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Bewerken krw oppervlaktewaterlichamen tot basins\n", + "- Opsplitsen van `krw_oppervlaktewaterlichamen_nederland_vlakken.gpkg` met `krw_split_lijnen.gpkg`\n", + "- Toevoegen van `waterlichaam` namen uit `oppervlaktewaterlichamen_rijk.gpkg`" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "exclude_owmident = [\n", + " \"NL95_1A\",\n", + " \"NL95_2A\",\n", + " \"NL95_3A\",\n", + " \"NL95_4A\",\n", + " \"NL81_1\",\n", + " \"NL81_10\",\n", + " \"NL81_3\",\n", + " \"NL81_2\",\n", + " \"NL89_zwin\",\n", + "]\n", + "krw_poly_gdf = gpd.read_file(\n", + " cloud.joinpath(\n", + " \"Basisgegevens\", \"KRW\", \"krw_oppervlaktewaterlichamen_nederland_vlakken.gpkg\"\n", + " )\n", + ")\n", + "\n", + "krw_poly_gdf = krw_poly_gdf.loc[~krw_poly_gdf.owmident.isin(exclude_owmident)]\n", + "krw_poly_gdf = krw_poly_gdf.explode(index_parts=False)\n", + "krw_poly_gdf[\"shapeArea\"] = krw_poly_gdf.area\n", + "krw_poly_gdf.sort_values(\"shapeArea\", ascending=False)\n", + "krw_poly_gdf.drop_duplicates(\"owmident\", keep=\"first\", inplace=True)\n", + "\n", + "krw_poly_gdf.to_file(\n", + " cloud.joinpath(\"Rijkswaterstaat\", \"verwerkt\", \"hdb.gpkg\"), layer=\"krw_waterlichamen\"\n", + ")\n", + "krw_split_lines_gdf = gpd.read_file(\n", + " cloud.joinpath(\"Rijkswaterstaat\", \"verwerkt\", \"model_user_data.gpkg\"),\n", + " layer=\"krw_split_lijnen\",\n", + ")\n", + "\n", + "\n", + "rws_opp_poly_gdf = gpd.read_file(\n", + " cloud.joinpath(\n", + " \"Rijkswaterstaat\", \"aangeleverd\", \"oppervlaktewaterlichamen_rijk.gpkg\"\n", + " )\n", + ")\n", + "\n", + "krw_poly_gdf = pd.concat(\n", + " [krw_poly_gdf, rws_opp_poly_gdf[rws_opp_poly_gdf.waterlichaam == \"Maximakanaal\"]]\n", + ")\n", + "rws_krw_poly_gdf = split_basins(krw_poly_gdf, krw_split_lines_gdf)\n", + "\n", + "\n", + "rws_krw_poly_gdf = join_by_poly_overlay(\n", + " rws_krw_poly_gdf,\n", + " rws_opp_poly_gdf[[\"waterlichaam\", \"geometry\"]],\n", + " select_by=\"poly_area\",\n", + ")\n", + "\n", + "merge_basin_polygons_gdf = gpd.read_file(\n", + " cloud.joinpath(\"Rijkswaterstaat\", \"verwerkt\", \"model_user_data.gpkg\"),\n", + " layer=\"merge_basin_polygons\",\n", + ")\n", + "\n", + "merge_lines_gdf = gpd.read_file(\n", + " cloud.joinpath(\"Rijkswaterstaat\", \"verwerkt\", \"model_user_data.gpkg\"),\n", + " layer=\"krw_merge_lijnen\",\n", + ")\n", + "\n", + "for row in rws_krw_poly_gdf[\n", + " rws_krw_poly_gdf.intersects(merge_basin_polygons_gdf.unary_union)\n", + "].itertuples():\n", + " geometry = row.geometry\n", + " merge_poly_gdf = merge_basin_polygons_gdf[\n", + " merge_basin_polygons_gdf.buffer(-10).intersects(geometry)\n", + " ]\n", + " if not merge_poly_gdf.empty:\n", + " merge_geometry = merge_poly_gdf.unary_union\n", + " rws_krw_poly_gdf.loc[row.Index, [\"geometry\"]] = geometry.union(merge_geometry)\n", + "\n", + "\n", + "# %%\n", + "\n", + "for line in merge_lines_gdf.geometry:\n", + " point_from, point_to = line.boundary.geoms\n", + " idx_from = rws_krw_poly_gdf[rws_krw_poly_gdf.contains(point_from)].index[0]\n", + " idx_to = rws_krw_poly_gdf[rws_krw_poly_gdf.contains(point_to)].index[0]\n", + " rws_krw_poly_gdf.loc[idx_to, [\"geometry\"]] = rws_krw_poly_gdf.loc[\n", + " [idx_from, idx_to]\n", + " ].unary_union\n", + " rws_krw_poly_gdf = rws_krw_poly_gdf[rws_krw_poly_gdf.index != idx_from]\n", + "\n", + "\n", + "rws_krw_poly = cloud.joinpath(\"Rijkswaterstaat\", \"verwerkt\", \"krw_basins_vlakken.gpkg\")\n", + "\n", + "rws_krw_poly_gdf[\"basin_id\"] = rws_krw_poly_gdf.reset_index().index + 1\n", + "rws_krw_poly_gdf.to_file(rws_krw_poly)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Aanmaken hoogte-oppervlakte-relaties" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "raster_path = cloud.joinpath(\n", + " \"Rijkswaterstaat\", \"verwerkt\", \"bathymetrie\", \"bathymetrie-merged.tif\"\n", + ")\n", + "\n", + "dfs = [\n", + " sample_level_area(raster_path, row.geometry, ident=row.basin_id)\n", + " for row in rws_krw_poly_gdf.itertuples()\n", + "]\n", + "\n", + "df = pd.concat(dfs)\n", + "\n", + "df.to_csv(\n", + " cloud.joinpath(\"Rijkswaterstaat\", \"verwerkt\", \"krw_basins_vlakken_level_area.csv\")\n", + ")" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.0" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/notebooks/rijkswaterstaat/3__kunstwerk.py b/notebooks/rijkswaterstaat/3__kunstwerk.py new file mode 100644 index 0000000..62fc9a3 --- /dev/null +++ b/notebooks/rijkswaterstaat/3__kunstwerk.py @@ -0,0 +1,215 @@ +# %% +# We extraheren kunstwerken voor het hoofdwatersysteem uit RWS data. Methode: +# 1. We pakken de kunstwerken uit Netwerk Informatie Systeem ( NIS ) van Rijkswaterstaat (nis_all_kunstwerken_hws_2019.gpkg) +# 2. We selecteren de kunstwerken die binnen het KRW lichamen vallen +# 3. Daarnaast voegen we extra kunstwerken die niet in de nis voorkomen maar wel noodzakelijk zijn voor modellering hoofdwatersysteem. +# Deze extra kunstwereken komen uit: baseline.gdb ; layer = "stuctures" en uit de lrws-legger:kunstwerken_primaire_waterkeringen) +# Ook voegen we drinkwateronttrekkingen toe + +import geopandas as gpd +import pandas as pd +from ribasim_nl import CloudStorage + +cloud = CloudStorage() + + +# %% +def photo_url(code): + if code in kwk_media.index: + return kwk_media.at[code, "photo_url"] # noqa: PD008 + else: + return r"https://www.hydrobase.nl/static/icons/photo_placeholder.png" + + +krw_lichaam = cloud.joinpath( + "Basisgegevens", "KRW", "krw_oppervlaktewaterlichamen_nederland_vlakken.gpkg" +) + +nis_hws = cloud.joinpath( + "Rijkswaterstaat", "aangeleverd", "NIS", "nis_all_kunstwerken_hws_2019.gpkg" +) +baseline = cloud.joinpath("baseline-nl_land-j23_6-v1", "baseline.gdb") +nis_hwvn = cloud.joinpath( + "Rijkswaterstaat", "aangeleverd", "NIS", "nis_alle_kunstwerken_hwvn_2019.gpkg" +) +primaire_kunstwerken = cloud.joinpath( + "Rijkswaterstaat", "aangeleverd", "kunstwerken_primaire_waterkeringen.gpkg" +) + +drinkwater = cloud.joinpath("drinkwaterbedrijven", "drinkwater_inlets.gpkg") + +# load media +kwk_media = pd.read_csv(cloud.joinpath("Rijkswaterstaat", "verwerkt", "kwk_media.csv")) +kwk_media.set_index("code", inplace=True) + +# Load GeoDataFrames +( + krw_lichaam_gdf, + nis_hws_gdf, + nis_hwvn_gdf, + primaire_kunstwerken_gdf, +) = ( + gpd.read_file(file) + for file in [krw_lichaam, nis_hws, nis_hwvn, primaire_kunstwerken] +) +drinkwater_gdf = gpd.read_file(drinkwater, layer="inlet__netherlands") +baseline_kunstwerken_gdf = gpd.read_file(baseline, layer="structure_lines") + +# Spatial joins +baseline_in_model = gpd.sjoin_nearest( + baseline_kunstwerken_gdf, krw_lichaam_gdf, how="inner", max_distance=50 +) +selected_hws_points = gpd.sjoin_nearest( + nis_hws_gdf, krw_lichaam_gdf, how="inner", max_distance=100 +) +selected_hwvn_points = gpd.sjoin_nearest( + nis_hwvn_gdf, krw_lichaam_gdf, how="inner", max_distance=20 +) + +# Combine selected points +selected_points = pd.concat([selected_hws_points, selected_hwvn_points]) + +# Filter points +desired_kw_soort = [ + "Stuwen", + "Stormvloedkeringen", + "Spuisluizen", + "Gemalen", + "keersluizen", + "Waterreguleringswerken", + "Schutsluizen", +] +filtered_points = selected_points[ + selected_points["kw_soort"].isin(desired_kw_soort) +].copy() + +# Calculate nearest distance +filtered_points.loc[:, ["nearest_distance"]] = [ + filtered_point["geometry"].distance(baseline_in_model.unary_union) + for _, filtered_point in filtered_points.iterrows() +] + +# Filter points based on distance +filtered_nearest_points = filtered_points[ + filtered_points["nearest_distance"] < 500 +].copy() + +# Remove specific values +filtered_nearest_points = filtered_nearest_points[ + ~filtered_nearest_points["complex_code"].isin(["40D-350", "48H-353", "42D-001"]) +] +filtered_nearest_points = filtered_nearest_points.drop(["index_right"], axis=1) + + +# Additional structures from Baseline, primaire waterkeringen and NIS and drinking water inlets +def name_from_baseline(string): + last_underscore_index = string.rfind("_") + if last_underscore_index != -1: + last_underscore_index += 1 + return string[last_underscore_index:] + else: + return string + + +baseline_kwk_add_gdf = baseline_kunstwerken_gdf[ + baseline_kunstwerken_gdf["NAME"].isin( + [ + "DM_68.30_R_US_Reevespuisluis", + "OS_SK_Oosterscheldekering39_Geul-van-Roggenplaat", + "KR_C_HK_Kadoelen", + ] + ) +] + +baseline_kwk_add_gdf.loc[:, ["geometry"]] = baseline_kwk_add_gdf.centroid +baseline_kwk_add_gdf.loc[:, ["kw_naam"]] = baseline_kwk_add_gdf["NAME"].apply( + name_from_baseline +) +baseline_kwk_add_gdf.loc[:, ["bron"]] = "baseline" +baseline_kwk_add_gdf.loc[:, ["complex_naam"]] = baseline_kwk_add_gdf["kw_naam"] +baseline_kwk_add_gdf.loc[:, ["kw_code"]] = baseline_kwk_add_gdf["NAME"] + +primaire_kwk_add_gdf = primaire_kunstwerken_gdf[ + primaire_kunstwerken_gdf["kd_code1"].isin(["KD.32.gm.015", "KD.44.gm.001"]) +] + +primaire_kwk_add_gdf.rename( + columns={"kd_code1": "kw_code", "kd_naam": "kw_naam", "naam_compl": "complex_naam"}, + inplace=True, +) +# %% +# Add drinking water inlets (OSM) +primaire_kwk_add_gdf.loc[:, ["bron"]] = "kunsterken primaire waterkeringen" +drinkwater_gdf.loc[:, ["bron"]] = "OSM" +drinkwater_gdf.rename( + columns={ + "osm_id": "kw_code", + "name": "kw_naam", + "operator": "beheerder", + }, + inplace=True, +) + +additional_points = pd.concat( + [ + primaire_kwk_add_gdf, + nis_hws_gdf[ + nis_hws_gdf["complex_code"].isin( + [ + "49D-400", + "44D-002", + "58C-001", + "45B-352", + "33F-001", + "21G-350", + "58D-001", + "51F-001", + ] + ) + ], + nis_hwvn_gdf[ + nis_hwvn_gdf["complex_code"].isin( + [ + "49D-400", + "44D-002", + "58C-001", + "45B-352", + "33F-001", + "21G-350", + "58D-001", + "51F-001", + ] + ) + ], + baseline_kwk_add_gdf, + drinkwater_gdf, + ] +) + +# add_baseline = gpd.sjoin_nearest( +# baseline_kunstwerken_gdf, filtered_nearest_points, how="inner", max_distance=1000 +# ) + +# Concatenate additional points +final_filtered_points = pd.concat([filtered_nearest_points, additional_points]) + +final_filtered_points.rename( + columns={"kw_naam": "naam", "kw_code": "code"}, inplace=True +) + +final_filtered_points.loc[final_filtered_points["bron"].isna(), ["bron"]] = "NIS" +# Add the lines from baseline_in_model to final_filtered_points + +# add photo_url +final_filtered_points.loc[:, ["photo_url"]] = final_filtered_points["code"].apply( + photo_url +) + +# Save results to GeoPackage files +output_file = cloud.joinpath("Rijkswaterstaat", "verwerkt", "hydamo.gpkg") +final_filtered_points.to_file( + output_file, layer="kunstwerken", driver="GPKG", engine="pyogrio" +) + + +# %% diff --git a/notebooks/rijkswaterstaat/4_build_model.py b/notebooks/rijkswaterstaat/4_build_model.py new file mode 100644 index 0000000..bc1a029 --- /dev/null +++ b/notebooks/rijkswaterstaat/4_build_model.py @@ -0,0 +1,647 @@ +# %% init +import geopandas as gpd +import pandas as pd +import ribasim +from ribasim_nl import CloudStorage, Network, reset_index +from ribasim_nl.rating_curve import read_rating_curve +from ribasim_nl.verdeelsleutels import ( + read_verdeelsleutel, + verdeelsleutel_to_fractions, +) + +cloud = CloudStorage() +node_list = [] +edge_list = [] + +boundaries_passed = [] +PRECIPITATION = 0.005 / 86400 # m/s +EVAPORATION = 0.001 / 86400 # m/s + +network = Network.from_network_gpkg( + cloud.joinpath("Rijkswaterstaat", "verwerkt", "netwerk.gpkg") +) +boundary_gdf = gpd.read_file( + cloud.joinpath("Rijkswaterstaat", "verwerkt", "model_user_data.gpkg"), + engine="pyogrio", + layer="boundary", + fid_as_index=True, +) + +structures_gdf = gpd.read_file( + cloud.joinpath("Rijkswaterstaat", "verwerkt", "hydamo.gpkg"), + layer="kunstwerken", + engine="pyogrio", + fid_as_index=True, +) + +basin_poly_gdf = gpd.read_file( + cloud.joinpath("Rijkswaterstaat", "verwerkt", "krw_basins_vlakken.gpkg"), + engine="pyogrio", + fid_as_index=True, +) + +structures_df = pd.read_excel( + cloud.joinpath("Rijkswaterstaat", "verwerkt", "kunstwerk_complexen.xlsx") +) + +level_area_df = pd.read_csv( + cloud.joinpath("Rijkswaterstaat", "verwerkt", "krw_basins_vlakken_level_area.csv") +) + +rating_curves_gdf = gpd.read_file( + cloud.joinpath("Rijkswaterstaat", "verwerkt", "rating_curves.gpkg"), + engine="pyogrio", + fid_as_index=True, +) + +verdeelsleutel_gdf = gpd.read_file( + cloud.joinpath("Rijkswaterstaat", "verwerkt", "verdeelsleutel.gpkg"), + engine="pyogrio", + fid_as_index=True, +) + +verdeelsleutel_df = read_verdeelsleutel( + cloud.joinpath("Rijkswaterstaat", "verwerkt", "verdeelsleutel_driel.xlsx") +) + + +# %% define nodes and links +nodes_gdf = network.nodes +links_gdf = network.links +network_union_lines = links_gdf.unary_union +network.overlay(basin_poly_gdf[["basin_id", "geometry"]]) + +basin_admin = { + i: {"nodes_from": [], "nodes_to": [], "neighbors": []} for i in basin_poly_gdf.index +} + + +for row in rating_curves_gdf.itertuples(): + basin_id = basin_poly_gdf[basin_poly_gdf.contains(row.geometry)].index[0] + basin_admin[basin_id]["rating_curve"] = row.curve_id + +# %% +boundary_gdf["node_id"] = boundary_gdf["geometry"].apply( + lambda x: network.move_node( + x, + max_distance=10, + allign_distance=10, + node_types=["downstream_boundary", "connection", "upstream_boundary"], + ) +) + + +def get_structure_codes(structures_gdf, complex_codes, line_string): + """Return list of nearest structure_codes from a list of complex_codes and a linestring.""" + structure_codes = [] + for complex_code, gdf in structures_gdf[ + structures_gdf.complex_code.isin(complex_codes) + ].groupby("complex_code"): + gdf_select = gdf[ + gdf.kw_soort.isin( + [ + "Stuwen", + "Spuisluizen", + "Stormvloedkeringen", + "keersluizen", + "Gemalen", + ] + ) + ] + if gdf_select.empty: + gdf_select = gdf[gdf.kw_soort == "Schutsluizen"] + if gdf_select.empty: + raise Exception(f"kan geen kunstwerk vinden voor {complex_code}") + structure_codes += [ + gdf_select.at[ + gdf_select.distance(line_string).sort_values().index[0], "code" + ] + ] + return structure_codes + + +def get_type_and_value(code, structures_gdf, structures_df): + if code not in structures_df.code.to_numpy(): + complex_code = structures_gdf.set_index("code").loc[code].complex_code + row = structures_df.set_index("code").loc[complex_code] + else: + row = structures_df.set_index("code").loc[code] + return row.ribasim_type, row.ribasim_waarde + + +# %% make lijst met kunstwerk-codes +structure_codes = structures_df[structures_df.code.isin(structures_gdf.code)][ + "code" +].to_list() + +complex_codes = structures_df[~structures_df.code.isin(structures_gdf.code)][ + "code" +].to_list() +structure_codes += get_structure_codes( + structures_gdf, + complex_codes=complex_codes, + line_string=network_union_lines, +) + + +# % itereer over kunstwerken +kwk_select_gdf = structures_gdf[structures_gdf.code.isin(structure_codes)] + +for kwk in kwk_select_gdf.itertuples(): + # get network_node_id + node_id = network.move_node( + kwk.geometry, + max_distance=150, + allign_distance=100, + node_types=["connection", "upstream_boundary"], + ) + if node_id is None: + node_id = network.add_node(kwk.geometry, max_distance=150, allign_distance=100) + + # add to node_list + node_type, node_value = get_type_and_value(kwk.code, structures_gdf, structures_df) + + if network.has_upstream_nodes(node_id) and network.has_downstream_nodes( + node_id + ): # normal case, structure is between basins + upstream, downstream = network.get_upstream_downstream(node_id, "basin_id") + if upstream is not None: + basin_admin[upstream]["nodes_to"] += [node_id] + if downstream is not None: + basin_admin[upstream]["neighbors"] += [downstream] + else: + raise ValueError( + f"Kan geen boven en benedenstroomse knoop vindern voor {kwk.naam}" + ) + if downstream is not None: + basin_admin[downstream]["nodes_from"] += [node_id] + if upstream is not None: + basin_admin[downstream]["neighbors"] += [upstream] + else: + print(f"{kwk.naam} is een outlet") + boundary = boundary_gdf.loc[ + boundary_gdf[boundary_gdf["type"] == "LevelBoundary"] + .distance(kwk.geometry) + .sort_values() + .index[0] + ] + boundaries_passed += [boundary.name] + node_list += [ + { + "type": "LevelBoundary", + "value": boundary.level, + "is_structure": False, + "code_waterbeheerder": boundary.code, + "waterbeheerder": "Rijkswaterstaat", + "name": boundary.naam, + "node_id": boundary.node_id, + "geometry": network.nodes.at[boundary.node_id, "geometry"], + } + ] + print(f"Processing node_id: {node_id}") + edge_list += [ + { + "from_node_id": node_id, + "to_node_id": boundary.node_id, + "edge_type": "flow", + "geometry": network.get_line(node_id, boundary.node_id), + } + ] + + elif network.has_downstream_nodes(node_id): + first, second = network.get_downstream(node_id, "basin_id") + if first is not None: + basin_admin[first]["nodes_from"] += [node_id] + if second is not None: + basin_admin[first]["neighbors"] += [second] + else: + raise ValueError(f"{kwk.naam} heeft problemen") + if second is not None: + basin_admin[second]["nodes_from"] += [node_id] + if first is not None: + basin_admin[second]["neighbors"] += [first] + else: + raise ValueError(f"{kwk.naam} heeft problemen") + + node_list += [ + { + "type": node_type, + "value": node_value, + "is_structure": True, + "code_waterbeheerder": kwk.code, + "waterbeheerder": "Rijkswaterstaat", + "name": kwk.naam, + "node_id": node_id, + "geometry": network.nodes.at[node_id, "geometry"], + } + ] + + +# %% +for basin in basin_poly_gdf.itertuples(): + # for basin in basin_poly_gdf.loc[[23, 42, 46, 93, 94]].itertuples(): + print(basin.owmnaam) + boundary_nodes = network.nodes[ + network.nodes.distance(basin.geometry.boundary) < 0.01 + ] + us_ds = [ + network.get_upstream_downstream(i, "basin_id") for i in boundary_nodes.index + ] + boundary_nodes["upstream"] = [i[0] for i in us_ds] + boundary_nodes["downstream"] = [i[1] for i in us_ds] + boundary_nodes = boundary_nodes.dropna(subset=["upstream", "downstream"], how="any") + boundary_nodes.loc[:, ["count"]] = [ + len(network.upstream_nodes(i)) + len(network.downstream_nodes(i)) + for i in boundary_nodes.index + ] + + boundary_nodes.sort_values(by="count", ascending=False, inplace=True) + boundary_nodes.loc[:, ["sum"]] = ( + boundary_nodes["upstream"] + boundary_nodes["downstream"] + ) + boundary_nodes.drop_duplicates("sum", inplace=True) + connected = basin_admin[basin.Index]["neighbors"] + boundary_nodes = boundary_nodes[~boundary_nodes["upstream"].isin(connected)] + boundary_nodes = boundary_nodes[~boundary_nodes["downstream"].isin(connected)] + + for node in boundary_nodes.itertuples(): + neighbor = next( + i for i in [node.upstream, node.downstream] if not i == basin.Index + ) + if basin.Index not in basin_admin[neighbor]["neighbors"]: + ds_node = node.upstream == basin.Index + node_type = "ManningResistance" + + # in case basin has rating curve we use FractionalFlow + if ds_node and ("rating_curve" in basin_admin[basin.Index].keys()): + node_type = "FractionalFlow" + # in us_case basin has rating curve we use FractionalFlow + elif (not ds_node) and ("rating_curve" in basin_admin[neighbor].keys()): + node_type = "FractionalFlow" + + if node_type == "FractionalFlow": + code = verdeelsleutel_gdf.at[ + verdeelsleutel_gdf.distance( + network.nodes.at[node.Index, "geometry"] + ) + .sort_values() + .index[0], + "fractie", + ] + else: + code = None + + node_list += [ + { + "type": node_type, + "is_structure": False, + "node_id": node.Index, + "code_waterbeheerder": code, + "geometry": network.nodes.at[node.Index, "geometry"], + } + ] + if node.upstream != basin.Index: + basin_admin[basin.Index]["nodes_from"] += [node.Index] + basin_admin[basin.Index]["neighbors"] += [node.upstream] + elif node.downstream != basin.Index: + basin_admin[basin.Index]["nodes_to"] += [node.Index] + basin_admin[basin.Index]["neighbors"] += [node.downstream] + else: + raise Exception(f"iets gaat fout bij {basin.Index}") + + nodes_from = basin_admin[basin.Index]["nodes_from"] + nodes_to = basin_admin[basin.Index]["nodes_to"] + + if (len(nodes_from) > 0) and (len(nodes_to) > 0): + gdf = network.subset_nodes( + nodes_from, + nodes_to, + duplicated_nodes=True, + directed=True, + inclusive=False, + ) + if gdf.empty: + gdf = network.subset_nodes( + nodes_from, + nodes_to, + duplicated_nodes=True, + directed=False, + inclusive=False, + ) + elif (len(nodes_from) > 0) or (len(nodes_to) > 0): + gdf = network.nodes[network.nodes.basin_id == basin.Index] + + gdf = gdf[gdf["basin_id"] == basin.Index] + + basin_node_id = gdf.distance(basin.geometry.centroid).sort_values().index[0] + basin_admin[basin.Index]["node_id"] = basin_node_id + node_list += [ + { + "type": "Basin", + "is_structure": False, + "code_waterbeheerder": basin.owmident, + "waterbeheerder": "Rijkswaterstaat", + "name": basin.owmnaam, + "node_id": basin_node_id, + "basin_id": basin.Index, + "geometry": network.nodes.at[basin_node_id, "geometry"], + } + ] + + # add rating-curve and extra edge + if "rating_curve" in basin_admin[basin.Index].keys(): + rc_node_id = next( + i for i in network.downstream_nodes(basin_node_id) if i in gdf.index + ) + node_list += [ + { + "type": "TabulatedRatingCurve", + "is_structure": False, + "waterbeheerder": "Rijkswaterstaat", + "code_waterbeheerder": basin_admin[basin.Index]["rating_curve"], + "name": basin_admin[basin.Index]["rating_curve"], + "node_id": rc_node_id, + "basin_id": basin.Index, + "geometry": network.nodes.at[rc_node_id, "geometry"], + } + ] + edge_list += [ + { + "from_node_id": basin_node_id, + "to_node_id": rc_node_id, + "name": basin.owmnaam, + "krw_id": basin.owmident, + "edge_type": "flow", + "geometry": network.get_line(basin_node_id, rc_node_id, directed=True), + } + ] + from_id = rc_node_id + else: + from_id = basin_node_id + + for node_from in nodes_from: + edge_list += [ + { + "from_node_id": node_from, + "to_node_id": basin_node_id, + "name": basin.owmnaam, + "krw_id": basin.owmident, + "edge_type": "flow", + "geometry": network.get_line(node_from, basin_node_id, directed=False), + } + ] + + for node_to in nodes_to: + edge_list += [ + { + "from_node_id": from_id, + "to_node_id": node_to, + "name": basin.owmnaam, + "krw_id": basin.owmident, + "edge_type": "flow", + "geometry": network.get_line(from_id, node_to, directed=False), + } + ] +# %% finish boundaries +for boundary in boundary_gdf[~boundary_gdf.index.isin(boundaries_passed)].itertuples(): + if boundary.type == "FlowBoundary": + basin_id = network.find_downstream(boundary.node_id, "basin_id") + value = boundary.flow_rate + edge_list += [ + { + "from_node_id": boundary.node_id, + "to_node_id": basin_admin[basin_id]["node_id"], + "name": basin_poly_gdf.loc[basin_id].owmnaam, + "krw_id": basin_poly_gdf.loc[basin_id].owmident, + "edge_type": "flow", + "geometry": network.get_line( + boundary.node_id, basin_admin[basin_id]["node_id"], directed=True + ), + } + ] + basin_admin[basin_id]["nodes_from"] += [boundary.node_id] + else: + basin_id = network.find_upstream(boundary.node_id, "basin_id") + basin_node_id = basin_admin[basin_id]["node_id"] + + gdf = network.nodes[network.nodes["basin_id"] == basin_id] + manning_node_id = ( + gdf.distance( + network.get_line(basin_node_id, boundary.node_id).interpolate( + 0.5, normalized=True + ) + ) + .sort_values() + .index[0] + ) # get manning node, closest to half-way on the line between basin and boundary + + value = boundary.level + node_list += [ + { + "type": "ManningResistance", + "is_structure": False, + "node_id": manning_node_id, + "geometry": network.nodes.at[manning_node_id, "geometry"], + } + ] + edge_list += [ + { + "from_node_id": basin_node_id, + "to_node_id": manning_node_id, + "name": basin_poly_gdf.loc[basin_id].owmnaam, + "krw_id": basin_poly_gdf.loc[basin_id].owmident, + "edge_type": "flow", + "geometry": network.get_line( + basin_node_id, manning_node_id, directed=True + ), + }, + { + "from_node_id": manning_node_id, + "to_node_id": boundary.node_id, + "name": basin_poly_gdf.loc[basin_id].owmnaam, + "krw_id": basin_poly_gdf.loc[basin_id].owmident, + "edge_type": "flow", + "geometry": network.get_line( + manning_node_id, boundary.node_id, directed=True + ), + }, + ] + basin_admin[basin_id]["nodes_to"] += [boundary.node_id] + + boundaries_passed += [boundary.Index] + node_list += [ + { + "type": boundary.type, + "value": value, + "is_structure": False, + "code_waterbeheerder": boundary.code, + "waterbeheerder": "Rijkswaterstaat", + "name": boundary.naam, + "node_id": boundary.node_id, + "geometry": network.nodes.at[boundary.node_id, "geometry"], + } + ] + +# %% +gpd.GeoDataFrame(node_list, crs=28992).to_file( + cloud.joinpath("Rijkswaterstaat", "verwerkt", "ribasim_intermediate.gpkg"), + layer="Node", +) +gpd.GeoDataFrame(edge_list, crs=28992).to_file( + cloud.joinpath("Rijkswaterstaat", "verwerkt", "ribasim_intermediate.gpkg"), + layer="Edge", +) # %% + +# %% define Network +node_df = gpd.GeoDataFrame(node_list, crs=28992).drop_duplicates() +node = ribasim.Node(df=node_df) +node.df.set_index("meta_node_id", drop=False, inplace=True) +node.df.index.name = "fid" +edge_df = gpd.GeoDataFrame(edge_list, crs=28992) +edge = ribasim.Edge(df=edge_df) +network = ribasim.Network(node=node, edge=edge) + +# %% define Basin +static_df = node_df[node_df["type"] == "Basin"][["node_id", "basin_id"]].set_index( + "basin_id" +) +level_area_df.drop_duplicates(["level", "area", "id"], inplace=True) +profile_df = level_area_df[level_area_df["id"].isin(static_df.index)] +profile_df["node_id"] = profile_df["id"].apply(lambda x: static_df.at[x, "node_id"]) +profile_df = profile_df[["node_id", "area", "level"]] + +static_df["precipitation"] = PRECIPITATION +static_df["potential_evaporation"] = EVAPORATION +static_df["drainage"] = 0 +static_df["infiltration"] = 0 +static_df["urban_runoff"] = 0 + +state_df = profile_df.groupby("node_id").min()["level"].reset_index() +state_df.loc[:, ["level"]] = state_df["level"].apply(lambda x: max(x + 1, 0)) + +basin = ribasim.Basin(profile=profile_df, static=static_df, state=state_df) + +# % define Resistance +# node_df.loc[node_df["type"] == "Outlet", ["type", "value"]] = ( +# "LinearResistance", +# 1000, +# ) # FIXME: Nijkerkersluis als goede type meenemen + +resistance_df = node_df[node_df["type"] == "LinearResistance"][["node_id", "value"]] +resistance_df.rename(columns={"value": "resistance"}, inplace=True) +linear_resistance = ribasim.LinearResistance(static=resistance_df) + +# % define Pump +pump_df = node_df[node_df["type"] == "Pump"][["node_id", "value"]] +pump_df.rename(columns={"value": "flow_rate"}, inplace=True) +pump = ribasim.Pump(static=pump_df) + + +# % define Outlet +outlet_df = node_df[node_df["type"] == "Outlet"][["node_id", "value"]] +outlet_df.rename(columns={"value": "flow_rate"}, inplace=True) +outlet = ribasim.Outlet(static=outlet_df) + +# % define fraction +node_index = node_df[node_df["type"] == "FractionalFlow"][ + ["code_waterbeheerder", "node_id"] +].set_index("code_waterbeheerder")["node_id"] + +fractional_flow_df = verdeelsleutel_to_fractions(verdeelsleutel_df, node_index) +fractional_flow = ribasim.FractionalFlow(static=fractional_flow_df) + +# % +node_index = node_df[node_df["type"] == "TabulatedRatingCurve"][ + ["code_waterbeheerder", "node_id"] +].set_index("code_waterbeheerder")["node_id"] +tabulated_rating_curve_df = read_rating_curve( + cloud.joinpath("Rijkswaterstaat", "verwerkt", "rating_curves.xlsx"), + node_index, +) +tabulated_rating_curve = ribasim.TabulatedRatingCurve(static=tabulated_rating_curve_df) + +# % define Manning +manning_df = node_df[node_df["type"] == "ManningResistance"][["node_id"]] +manning_df["length"] = 10000 +manning_df["manning_n"] = 0.04 +manning_df["profile_width"] = 10000 +manning_df["profile_slope"] = 1 + +manning_resistance = ribasim.ManningResistance(static=manning_df) + +# % define FlowBoundary +flow_boundary_df = node_df[node_df["type"] == "FlowBoundary"][["node_id", "value"]] +flow_boundary_df.rename(columns={"value": "flow_rate"}, inplace=True) +flow_boundary = ribasim.FlowBoundary(static=flow_boundary_df) + +# % define LevelBoundary +level_boundary_df = node_df[node_df["type"] == "LevelBoundary"][["node_id", "value"]] +level_boundary_df.rename(columns={"value": "level"}, inplace=True) +level_boundary = ribasim.LevelBoundary(static=level_boundary_df) + + +# % write model +model = ribasim.Model( + network=network, + basin=basin, + flow_boundary=flow_boundary, + level_boundary=level_boundary, + linear_resistance=linear_resistance, + manning_resistance=manning_resistance, + tabulated_rating_curve=tabulated_rating_curve, + fractional_flow=fractional_flow, + pump=pump, + outlet=outlet, + # terminal=terminal, + starttime="2020-01-01 00:00:00", + endtime="2021-01-01 00:00:00", +) + +# %% +model = reset_index(model) + +# %% verwijderen Nijkerkersluis + +nijkerk_idx = model.network.node.df[ + model.network.node.df["meta_code_waterbeheerder"] == "32E-001-04" +].index + +# model.network.node.df = model.network.node.df[ +# ~(model.network.node.df["meta_node_id"].isin(nijkerk_idx)) +# ] + +# model.network.edge.df = model.network.edge.df[ +# ~(model.network.edge.df["from_node_id"].isin(nijkerk_idx)) +# ] + +# model.network.edge.df = model.network.edge.df[ +# ~(model.network.edge.df["to_node_id"].isin(nijkerk_idx)) +# ] + +# model.linear_resistance.static.df = model.linear_resistance.static.df[ +# ~model.linear_resistance.static.df["node_id"].isin(nijkerk_idx) +# ] + +# model = reset_index(model) + +model.linear_resistance.static.df.loc[ + model.linear_resistance.static.df["node_id"].isin(nijkerk_idx), ["active"] +] = False + +model.linear_resistance.static.df.loc[ + ~model.linear_resistance.static.df["node_id"].isin(nijkerk_idx), ["active"] +] = True + + +# %%% +model.solver.algorithm = "RK4" +model.solver.adaptive = False +model.solver.dt = 10.0 +model.solver.saveat = 360 + +# %% +print("write ribasim model") +ribasim_toml = cloud.joinpath("Rijkswaterstaat", "modellen", "hws_network", "hws.toml") +model.write(ribasim_toml) + +# %% diff --git a/notebooks/rijkswaterstaat/5_add_control.py b/notebooks/rijkswaterstaat/5_add_control.py new file mode 100644 index 0000000..37feaa9 --- /dev/null +++ b/notebooks/rijkswaterstaat/5_add_control.py @@ -0,0 +1,178 @@ +# %% +from datetime import datetime + +import pandas as pd +import ribasim +from ribasim_nl import CloudStorage, discrete_control +from ribasim_nl.model import add_control_node_to_network, update_table +from ribasim_nl.verdeelsleutels import read_verdeelsleutel, verdeelsleutel_to_control + +cloud = CloudStorage() +waterbeheerder = "Rijkswaterstaat" + +ribasim_toml = cloud.joinpath("Rijkswaterstaat", "modellen", "hws_network", "hws.toml") +model = ribasim.Model.read(ribasim_toml) + +verdeelsleutel_df = read_verdeelsleutel( + cloud.joinpath("Rijkswaterstaat", "verwerkt", "verdeelsleutel_driel.xlsx") +) + +# %% start adding +# % add Driel +name = "Driel" +code_waterbeheerder = "40A-004-02" + +offset_node_id = model.network.node.df[ + model.network.node.df["meta_code_waterbeheerder"] == code_waterbeheerder +].index[0] +model = verdeelsleutel_to_control( + verdeelsleutel_df, + model, + name=name, + code_waterbeheerder=code_waterbeheerder, + offset_node_id=offset_node_id, + waterbeheerder="Rijkswaterstaat", +) + +# % add Haringvliet +name = "Haringvlietsluizen" +code_waterbeheerder = "37C-350-09" +flow_rate_haringvliet = [0, 0, 50, 50, 400, 2500, 3800, 5200, 6800, 8000, 9000] +flow_rate_lobith = [0, 1100, 1100, 1700, 2000, 4000, 6000, 8000, 10000, 12000, 15000] + +node_ids = model.network.node.df[ + model.network.node.df["meta_code_waterbeheerder"] == code_waterbeheerder +].index + + +ctrl_node_id = add_control_node_to_network( + model.network, + node_ids, + ctrl_node_geom=(62430, 427430), + meta_waterbeheerder="Rijkswaterstaat", + name=name, + meta_code_waterbeheerder=name, +) + +listen_feature_id = model.network.node.df[ + model.network.node.df["meta_code_waterbeheerder"] == "LOBH" +].index[0] + +condition_df = discrete_control.condition( + values=flow_rate_lobith, + node_id=ctrl_node_id, + listen_feature_id=listen_feature_id, + name=name, +) + +model.discrete_control.condition.df = update_table( + model.discrete_control.condition.df, condition_df +) + +logic_df = discrete_control.logic( + node_id=ctrl_node_id, + length=len(flow_rate_haringvliet), + name=name, +) + +model.discrete_control.logic.df = update_table( + model.discrete_control.logic.df, ribasim.DiscreteControl(logic=logic_df).logic.df +) + +outlet_df = discrete_control.node_table( + values=flow_rate_lobith, variable="flow_rate", name=name, node_id=node_ids[0] +) + +model.outlet.static.df = update_table( + model.outlet.static.df, ribasim.Outlet(static=outlet_df).static.df +) + +# % add Ijsselmeer via water-level waddenzee +node_ids = model.level_boundary.static.df[ + model.level_boundary.static.df["node_id"].isin([2, 4]) +]["node_id"].to_numpy() + +time = pd.date_range(model.starttime, model.endtime) + +day_of_year = [ + "01-01", + "03-01", + "03-11", + "03-21", + "04-01", + "04-10", + "04-15", + "08-11", + "08-21", + "08-31", + "09-11", + "09-15", + "09-21", + "10-01", + "10-11", + "10-21", + "10-31", + "12-31", +] + +level = [ + -0.4, + -0.2, + -0.1, + -0.1, + -0.15, + -0.15, + -0.15, + -0.15, + -0.2, + -0.25, + -0.28, + -0.3, + -0.32, + -0.35, + -0.4, + -0.4, + -0.4, + -0.4, +] +level_cycle_df = pd.DataFrame( + { + "dayofyear": [ + datetime.strptime(i, "%m-%d").timetuple().tm_yday for i in day_of_year + ], + "level": level, + } +).set_index("dayofyear") + + +def get_level(timestamp, level_cycle_df): + return level_cycle_df.at[ + level_cycle_df.index[level_cycle_df.index <= timestamp.dayofyear].max(), "level" + ] + + +# %% +time = pd.date_range(model.starttime, model.endtime) +level_df = pd.DataFrame( + {"time": time, "level": [get_level(i, level_cycle_df) for i in time]} +) + +level_df = pd.concat( + [ + pd.concat( + [level_df, pd.DataFrame({"node_id": [node_id] * len(level_df)})], axis=1 + ) + for node_id in node_ids + ], + ignore_index=True, +) +model.level_boundary.time.df = level_df +model.level_boundary.static.df = model.level_boundary.static.df[ + ~model.level_boundary.static.df.node_id.isin(node_ids) +] + +# %% write model +ribasim_toml = cloud.joinpath("Rijkswaterstaat", "modellen", "hws", "hws.toml") +model.write(ribasim_toml) + +# %% diff --git a/notebooks/rijkswaterstaat/6_netwerk.py b/notebooks/rijkswaterstaat/6_netwerk.py new file mode 100644 index 0000000..62bc6ca --- /dev/null +++ b/notebooks/rijkswaterstaat/6_netwerk.py @@ -0,0 +1,243 @@ +# %% +import geopandas as gpd +import numpy as np +import pandas as pd +from ribasim_nl import CloudStorage, Network +from shapely.geometry import LineString, Point, Polygon +from shapely.ops import snap, split + +cloud = CloudStorage() + +# %% read files + +print("read basins") +krw_basins_gdf = gpd.read_file( + cloud.joinpath("Rijkswaterstaat", "verwerkt", "krw_basins_vlakken.gpkg"), + engine="pyogrio", +) + +print("read rijkspolygonen") +rws_opp_poly_gdf = gpd.read_file( + cloud.joinpath( + "Rijkswaterstaat", "aangeleverd", "oppervlaktewaterlichamen_rijk.gpkg" + ) +) + +print("read osm fairway") +fairway_osm_gdf = gpd.read_file( + cloud.joinpath("basisgegevens", "OSM", "waterway_fairway_the_netherlands.gpkg"), + engine="pyogrio", +) + +print("read osm river") +river_osm_gdf = gpd.read_file( + cloud.joinpath("basisgegevens", "OSM", "waterway_river_the_netherlands.gpkg"), + engine="pyogrio", +) + +print("read osm canals") +canal_osm_gdf = gpd.read_file( + cloud.joinpath("basisgegevens", "OSM", "waterway_canal_the_netherlands.gpkg"), + engine="pyogrio", +) + +print("read extra lijnen") +extra_lines_gdf = gpd.read_file( + cloud.joinpath("Rijkswaterstaat", "verwerkt", "model_user_data.gpkg"), + layer="extra_netwerk_lijnen_2", + engine="pyogrio", +) + +print("read verwijder lijnen") +remove_lines_gdf = gpd.read_file( + cloud.joinpath("Rijkswaterstaat", "verwerkt", "model_user_data.gpkg"), + layer="verwijder_lijn_2", + engine="pyogrio", +) + +print("read toevoegen knoop") +add_nodes_gdf = gpd.read_file( + cloud.joinpath("Rijkswaterstaat", "verwerkt", "model_user_data.gpkg"), + layer="toevoegen knoop", + engine="pyogrio", +) + + +# %% Create vaarwegen and osm basins filters and masks + +ijsselmeer_basins = [ + "NL92_MARKERMEER", + "NL92_IJSSELMEER", +] +# KRW dekt sommige kunstwerken niet geheel waardoor rijks_waterlichamen zijn toegevoegd +rijks_waterlichamen = [ + "Maximakanaal", + "Kanaal Wessem-Nederweert", + "Noordzeekanaal", + "Buiten-IJ", + "Buitenhaven van IJmuiden", +] + +exclude_osm_basins = ijsselmeer_basins + +print("create osm mask polygon") +filtered_osm_basins_gdf = krw_basins_gdf[ + ~krw_basins_gdf["owmident"].isin(exclude_osm_basins) +] + +osm_basins_mask = ( + filtered_osm_basins_gdf.explode(index_parts=False) + .geometry.exterior.apply(Polygon) + .unary_union +) + +rws_opp_poly_mask = rws_opp_poly_gdf[ + rws_opp_poly_gdf.waterlichaam.isin(rijks_waterlichamen) +].unary_union + +osm_mask = osm_basins_mask.union(rws_opp_poly_mask) +rws_opp_poly_mask_gdf = gpd.GeoDataFrame(geometry=[rws_opp_poly_mask]) +osm_basins_mask_gdf = gpd.GeoDataFrame(geometry=[osm_basins_mask]) + +# Create a GeoDataFrame from the union result +osm_mask_gdf = gpd.GeoDataFrame(geometry=[osm_mask]) + + +# %% Overlay lines with krw-basins + +print("extra lines basin overlay") +extra_basin_gdf = gpd.overlay(extra_lines_gdf, krw_basins_gdf, how="union") + +print("river osm basin overlay") +river_osm_gdf = river_osm_gdf[river_osm_gdf.intersects(osm_mask)] +river_osm_basin_gdf = gpd.overlay(river_osm_gdf, filtered_osm_basins_gdf, how="union") + +print("canal osm basin overlay") +canal_osm_gdf = canal_osm_gdf[canal_osm_gdf.intersects(osm_mask)] +canal_osm_basin_gdf = gpd.overlay(canal_osm_gdf, filtered_osm_basins_gdf, how="union") + +print("canal osm fairway overlay") +fairway_osm_gdf = fairway_osm_gdf[fairway_osm_gdf.intersects(osm_mask)] +fairway_osm_basin_gdf = gpd.overlay( + fairway_osm_gdf, filtered_osm_basins_gdf, how="union" +) + + +# %% Samenvoegen tot 1 lijnenbestand +river_osm_basin_gdf.rename(columns={"osm_id": "id"}, inplace=True) +canal_osm_basin_gdf.rename(columns={"osm_id": "id"}, inplace=True) +fairway_osm_basin_gdf.rename(columns={"osm_id": "id"}, inplace=True) +extra_basin_gdf.rename(columns={"naam": "name"}, inplace=True) +# Concatenate GeoDataFrames +print("concat") +network_lines_gdf = pd.concat( + [ + river_osm_basin_gdf, + canal_osm_basin_gdf, + fairway_osm_basin_gdf, + ], + ignore_index=True, +) + +remove_indices = [] +for geometry in remove_lines_gdf.geometry: + remove_indices += network_lines_gdf.loc[ + network_lines_gdf.geometry.within(geometry.buffer(0.1)) + ].index.to_list() +network_lines_gdf = network_lines_gdf[~network_lines_gdf.index.isin(remove_indices)] + +data = [] +for geometry in add_nodes_gdf.geometry: + lines_select_gdf = network_lines_gdf[ + network_lines_gdf.geometry.buffer(0.01).intersects(geometry.buffer(0.01)) + ] + for idx, row in lines_select_gdf.iterrows(): + feature = row.to_dict() + us_geometry, ds_geometry = split( + snap(row.geometry, geometry, 0.01), geometry + ).geoms + network_lines_gdf.loc[idx, "geometry"] = us_geometry + feature["geometry"] = ds_geometry + data += [feature] + +network_lines_gdf = pd.concat( + [ + network_lines_gdf, + extra_basin_gdf, + gpd.GeoDataFrame(data, crs=network_lines_gdf.crs), + ], + ignore_index=True, +) + +# %% wegschrijven als netwerk + + +def subdivide_line(line, max_length): + total_length = line.length + + num_segments = int(np.ceil(total_length / max_length)) + + if num_segments == 1: + return [line] + + segments = [] + for i in range(num_segments): + start_frac = i / num_segments + end_frac = (i + 1) / num_segments + start_point = line.interpolate(start_frac, normalized=True) + start_dist = line.project(start_point) + end_point = line.interpolate(end_frac, normalized=True) + end_dist = line.project(end_point) + + points = ( + [start_point] + + [ + Point(i) + for i in line.coords + if (line.project(Point(i)) > start_dist) + and (line.project(Point(i)) < end_dist) + ] + + [end_point] + ) + segment = LineString(points) + segments.append(segment) + + return segments + + +def subdivide_geodataframe(gdf, max_length): + data = [] + + for row in gdf.explode().itertuples(): + row_dict = row._asdict() + row_dict.pop("geometry") + lines = subdivide_line(row.geometry, max_length) + data += [{**row_dict, "geometry": line} for line in lines] + + return gpd.GeoDataFrame(data=data, crs=gdf.crs) + + +# Assuming network_lines_gdf is defined somewhere before this point +network_lines_gdf = network_lines_gdf[ + ~network_lines_gdf["name"].isin(["Geul", "Derde Diem"]) +] # brute verwijdering wegens sifon onder Julianakanaal + +network = Network(network_lines_gdf, tolerance=1, id_col="id", name_col="name") + +print("write to hydamo") +lines = network.links +lines.rename(columns={"name": "naam"}, inplace=True) +lines.to_file( + cloud.joinpath("Rijkswaterstaat", "verwerkt", "hydamo.gpkg"), + layer="hydroobject", + engine="pyogrio", +) + + +gdf_subdivided = subdivide_geodataframe(network_lines_gdf, max_length=450) + +# %% +network = Network(gdf_subdivided, tolerance=1, id_col="id", name_col="name") + +print("write network") +network.to_file(cloud.joinpath("Rijkswaterstaat", "verwerkt", "netwerk.gpkg")) diff --git a/notebooks/rijkswaterstaat/7_upload_hws_model.py b/notebooks/rijkswaterstaat/7_upload_hws_model.py new file mode 100644 index 0000000..93ff8dc --- /dev/null +++ b/notebooks/rijkswaterstaat/7_upload_hws_model.py @@ -0,0 +1,7 @@ +# %% +from ribasim_nl import CloudStorage + +cloud = CloudStorage() + +cloud.upload_model("Rijkswaterstaat", "hws") +# %% diff --git a/notebooks/rijkswaterstaat/netwerk.py b/notebooks/rijkswaterstaat/netwerk.py deleted file mode 100644 index 7f717db..0000000 --- a/notebooks/rijkswaterstaat/netwerk.py +++ /dev/null @@ -1,84 +0,0 @@ -# %% -import geopandas as gpd -from ribasim_nl import CloudStorage -from ribasim_nl.geodataframe import direct_basins, join_by_poly_overlay, split_basins - -cloud = CloudStorage() - -# %% Prepare RWS krw_basin_polygons - -krw_poly_gdf = gpd.read_file( - cloud.joinpath( - "Basisgegevens", "KRW", "krw_oppervlaktewaterlichamen_nederland_vlakken.gpkg" - ) -) - -krw_split_lines_gdf = gpd.read_file( - cloud.joinpath("Rijkswaterstaat", "verwerkt", "krw_split_lijnen.gpkg") -) - -rws_opp_poly_gdf = gpd.read_file( - cloud.joinpath( - "Rijkswaterstaat", "aangeleverd", "oppervlaktewaterlichamen_rijk.gpkg" - ) -) - - -rws_krw_poly_gdf = split_basins(krw_poly_gdf, krw_split_lines_gdf) - -rws_krw_poly_gdf = join_by_poly_overlay( - rws_krw_poly_gdf, - rws_opp_poly_gdf[["waterlichaam", "geometry"]], - select_by="poly_area", -) - - -rws_krw_poly = cloud.joinpath("Rijkswaterstaat", "verwerkt", "krw_basins_vlakken.gpkg") - -rws_krw_poly_gdf.to_file(rws_krw_poly) - - -# %% create overlay with krw_lines and polygons -krw_line_gdf = gpd.read_file( - cloud.joinpath( - "Basisgegevens", "KRW", "krw_oppervlaktewaterlichamen_nederland_lijnen.gpkg" - ) -) - -rws_krw_lines = cloud.joinpath("Rijkswaterstaat", "verwerkt", "krw_basins_lijnen.gpkg") - -rws_krw_line_gdf = join_by_poly_overlay( - gpd.GeoDataFrame(krw_line_gdf.explode()["geometry"]), rws_krw_poly_gdf -) - -rws_krw_line_gdf.to_file(rws_krw_lines) - -# %% direct basins - -basin_ident = "owmident" -link_ident = "Name" - -basins_gdf = gpd.read_file( - cloud.joinpath("Rijkswaterstaat", "verwerkt", "krw_basins_vlakken.gpkg") -) - -network_gdf = gpd.read_file( - cloud.joinpath("Basisgegevens", "lsm3-j18_5v6", "shapes", "network_Branches.shp") -) -network_gdf.set_crs(28992, inplace=True) -drop_duplicates = True - -poly_directions_gdf = direct_basins(basins_gdf, network_gdf, basin_ident, link_ident) - - -poly_directions_gdf.to_file( - cloud.joinpath("Rijkswaterstaat", "verwerkt", "krw_basins_verbindingen.gpkg") -) - -# %% snap nodes - -# %% build graph - -# %% build_network - -# %% A(h) diff --git a/notebooks/samenvoegen_modellen.py b/notebooks/samenvoegen_modellen.py new file mode 100644 index 0000000..42607eb --- /dev/null +++ b/notebooks/samenvoegen_modellen.py @@ -0,0 +1,218 @@ +# %% +import sqlite3 +from datetime import datetime + +import pandas as pd +import ribasim +from ribasim_nl import CloudStorage +from ribasim_nl.concat import concat + +# %% +cloud = CloudStorage() +readme = f"""# Model voor het Landelijk Hydrologisch Model + +Gegenereerd: {datetime.now().strftime("%Y-%m-%d %H:%M:%S")} +Ribasim-Python versie: {ribasim.__version__} +Getest (u kunt simuleren): Nee + +** Samengevoegde modellen (beheerder: modelnaam (versie)** +""" + + +def fix_rating_curve(database_path): + # Connect to the SQLite database + conn = sqlite3.connect(database_path) + + tables = ["TabulatedRatingCurve / static", "TabulatedRatingCurve / time"] + + for table in tables: + # Read the table into a pandas DataFrame + try: + df = pd.read_sql_query(f"SELECT * FROM '{table}'", conn) + except: # noqa: E722 + continue + + # Rename the column in the DataFrame + df_renamed = df.rename(columns={"discharge": "flow_rate"}) + + # Write the DataFrame back to the SQLite table + df_renamed.to_sql(table, conn, if_exists="replace", index=False) + + # Close the connection + conn.close() + + +def add_basin_state(toml): + # load a model without Basin / state + model = ribasim.Model(filepath=toml) + basin = model.basin + + # set initial level to (for example) 1 meter above Basin bottom + basin.state.df = pd.DataFrame( + (basin.profile.df.groupby("node_id").min("level").level) + 1.0 + ).reset_index() + + # remove geopackage key in model if exists + if hasattr(model, "geopackage"): + model.geopackage = None + + # write it back + model.write(toml) + + +models = [ + { + "authority": "Rijkswaterstaat", + "model": "hws", + "find_toml": False, + "update": False, + "zoom_level": 0, + }, + { + "authority": "AmstelGooienVecht", + "model": "AmstelGooienVecht_poldermodel", + "find_toml": True, + "update": True, + "zoom_level": 3, + }, + { + "authority": "Delfland", + "model": "Delfland_poldermodel", + "find_toml": True, + "update": True, + "zoom_level": 3, + }, + { + "authority": "HollandseDelta", + "model": "HollandseDelta_poldermodel", + "find_toml": True, + "update": True, + "zoom_level": 3, + }, + { + "authority": "HollandsNoorderkwartier", + "model": "HollandsNoorderkwartier_poldermodel", + "find_toml": True, + "update": True, + "zoom_level": 3, + }, + { + "authority": "Rijnland", + "model": "Rijnland_poldermodel", + "find_toml": True, + "update": True, + "zoom_level": 3, + }, + { + "authority": "Rivierenland", + "model": "Rivierenland_poldermodel", + "find_toml": True, + "update": True, + "zoom_level": 3, + }, + { + "authority": "Scheldestromen", + "model": "Scheldestromen_poldermodel", + "find_toml": True, + "update": True, + "zoom_level": 3, + }, + { + "authority": "SchielandendeKrimpenerwaard", + "model": "SchielandendeKrimpenerwaard_poldermodel", + "find_toml": True, + "update": True, + "zoom_level": 3, + }, + { + "authority": "WetterskipFryslan", + "model": "WetterskipFryslan_poldermodel", + "find_toml": True, + "update": True, + "zoom_level": 3, + }, + { + "authority": "Zuiderzeeland", + "model": "Zuiderzeeland_poldermodel", + "find_toml": True, + "update": True, + "zoom_level": 3, + }, +] + +for idx, model in enumerate(models): + print(f"{model["authority"]} - {model["model"]}") + model_versions = [ + i + for i in cloud.uploaded_models(model["authority"]) + if i.model == model["model"] + ] + if model_versions: + model_version = sorted(model_versions, key=lambda x: x.version)[-1] + else: + raise ValueError(f"No models with name {model["model"]} in the cloud") + + model_path = cloud.joinpath( + model["authority"], "modellen", model_version.path_string + ) + + # download model if not yet downloaded + if not model_path.exists(): + print(f"Downloaden versie: {model_version.version}") + url = cloud.joinurl(model["authority"], "modellen", model_version.path_string) + cloud.download_content(url) + + # find toml + if model["find_toml"]: + tomls = list(model_path.glob("*.toml")) + if len(tomls) > 1: + raise ValueError( + f"User provided more than one toml-file: {len(tomls)}, remove one!" + ) + else: + model_path = tomls[0] + else: + model_path = model_path.joinpath(f"{model["model"]}.toml") + + # update model to v0.7.0 + if model["update"] and (not model_path.parent.joinpath("updated").exists()): + print("updating model") + # rename db_file if incorrect + db_file = model_path.parent.joinpath(f"{tomls[0].stem}.gpkg") + if db_file.exists(): + db_file = db_file.rename(model_path.parent.joinpath("database.gpkg")) + else: + db_file = model_path.parent.joinpath("database.gpkg") + if not db_file.exists(): + raise FileNotFoundError(f"{db_file} doesn't exist") + # fix rating_curve + fix_rating_curve(db_file) + + # add basin-state + add_basin_state(model_path) + + model_path.parent.joinpath("updated").write_text("true") + + # read model + ribasim_model = ribasim.Model.read(model_path) + ribasim_model.network.node.df.loc[:, "meta_zoom_level"] = model["zoom_level"] + ribasim_model.network.edge.df.loc[:, "meta_zoom_level"] = model["zoom_level"] + if idx == 0: + lhm_model = ribasim_model + else: + cols = [i for i in lhm_model.network.edge.df.columns if i != "meta_index"] + lhm_model.network.edge.df = lhm_model.network.edge.df[cols] + ribasim_model.network.node.df.loc[:, "meta_waterbeheerder"] = model["authority"] + ribasim_model.network.edge.df.loc[:, "meta_waterbeheerder"] = model["authority"] + lhm_model = concat([lhm_model, ribasim_model]) + + readme += f""" +**{model["authority"]}**: {model["model"]} ({model_version.version})""" + +# %% +print("write lhm model") +ribasim_toml = cloud.joinpath("Rijkswaterstaat", "modellen", "lhm", "lhm.toml") +lhm_model.write(ribasim_toml) +cloud.joinpath("Rijkswaterstaat", "modellen", "lhm", "readme.md").write_text(readme) +# %% +cloud.upload_model("Rijkswaterstaat", model="lhm") diff --git a/notebooks/samenvoegen_overig.py b/notebooks/samenvoegen_overig.py new file mode 100644 index 0000000..40266e3 --- /dev/null +++ b/notebooks/samenvoegen_overig.py @@ -0,0 +1,162 @@ +# %% +import geopandas as gpd +import pandas as pd +from ribasim_nl import CloudStorage +from ribasim_nl.geometry import drop_z +from shapely.geometry import MultiPolygon + +# %% +cloud = CloudStorage() + + +models = [ + { + "authority": "Rijkswaterstaat", + "model": "hws", + "find_toml": False, + "update": False, + "zoom_level": 0, + "area_file": "krw_basins_vlakken.gpkg", + "area_layer": "krw_basins_vlakken", + }, + { + "authority": "AmstelGooienVecht", + "model": "AmstelGooienVecht_poldermodel", + "find_toml": True, + "update": True, + "zoom_level": 3, + "area_file": "AmstelGooienVecht_poldermodel_checks.gpkg", + "area_layer": "peilgebied_met_streefpeil", + }, + { + "authority": "Delfland", + "model": "Delfland_poldermodel", + "find_toml": True, + "update": True, + "zoom_level": 3, + "area_file": "Delfland_poldermodel_checks.gpkg", + "area_layer": "peilgebied_met_streefpeil", + }, + { + "authority": "HollandseDelta", + "model": "HollandseDelta_poldermodel", + "find_toml": True, + "update": True, + "zoom_level": 3, + "area_file": "HollandseDelta_poldermodel_checks.gpkg", + "area_layer": "peilgebied_met_streefpeil", + }, + { + "authority": "HollandsNoorderkwartier", + "model": "HollandsNoorderkwartier_poldermodel", + "find_toml": True, + "update": True, + "zoom_level": 3, + "area_file": "HollandsNoorderkwartier_poldermodel_checks.gpkg", + "area_layer": "peilgebied_met_streefpeil", + }, + { + "authority": "Rijnland", + "model": "Rijnland_poldermodel", + "find_toml": True, + "update": True, + "zoom_level": 3, + "area_file": "Rijnland_poldermodel_checks.gpkg", + "area_layer": "peilgebied_met_streefpeil", + }, + { + "authority": "Rivierenland", + "model": "Rivierenland_poldermodel", + "find_toml": True, + "update": True, + "zoom_level": 3, + "area_file": "Rivierenland_poldermodel_checks.gpkg", + "area_layer": "peilgebied_met_streefpeil", + }, + { + "authority": "Scheldestromen", + "model": "Scheldestromen_poldermodel", + "find_toml": True, + "update": True, + "zoom_level": 3, + "area_file": "Scheldestromen_poldermodel_checks.gpkg", + "area_layer": "peilgebied_met_streefpeil", + }, + { + "authority": "SchielandendeKrimpenerwaard", + "model": "SchielandendeKrimpenerwaard_poldermodel", + "find_toml": True, + "update": True, + "zoom_level": 3, + "area_file": "SchielandendeKrimpenerwaard_poldermodel_checks.gpkg", + "area_layer": "peilgebied_met_streefpeil", + }, + { + "authority": "WetterskipFryslan", + "model": "WetterskipFryslan_poldermodel", + "find_toml": True, + "update": True, + "zoom_level": 3, + "area_file": "WetterskipFryslan_poldermodel_checks.gpkg", + "area_layer": "peilgebied_met_streefpeil", + }, + { + "authority": "Zuiderzeeland", + "model": "Zuiderzeeland_poldermodel", + "find_toml": True, + "update": True, + "zoom_level": 3, + "area_file": "Zuiderzeeland_poldermodel_checks.gpkg", + "area_layer": "peilgebied_met_streefpeil", + }, +] + +gdfs = [] +for model in models: + print(model["authority"]) + model_versions = [ + i + for i in cloud.uploaded_models(model["authority"]) + if i.model == model["model"] + ] + if model_versions: + model_version = sorted(model_versions, key=lambda x: x.version)[-1] + else: + raise ValueError(f"No models with name {model["model"]} in the cloud") + + gpkg_file = cloud.joinpath( + model["authority"], "modellen", model_version.path_string, model["area_file"] + ) + + gdf = gpd.read_file(gpkg_file, layer=model["area_layer"], engine="pyogrio") + if gdf.crs is None: + gdf.crs = 28992 + elif gdf.crs.to_epsg() != 28992: + gdf.to_crs(28992, inplace=True) + gdf.loc[:, ["waterbeheerder"]] = model["authority"] + gdf.rename( + columns={"waterhoogte": "level", "owmident": "code", "owmnaam": "name"}, + inplace=True, + ) + gdfs += [gdf] + +# %% +gdf = pd.concat(gdfs, ignore_index=True) + +# drop z-coordinates +gdf.loc[gdf.has_z, "geometry"] = gdf.loc[gdf.has_z, "geometry"].apply( + lambda x: drop_z(x) +) + +# drop non-polygons +mask = gdf.geom_type == "GeometryCollection" +gdf.loc[mask, "geometry"] = gdf.loc[mask, "geometry"].apply( + lambda x: MultiPolygon( + [i for i in x.geoms if i.geom_type in ["Polygon", "MultiPolygon"]] + ) +) + +gpkg_file = cloud.joinpath("Rijkswaterstaat", "modellen", "lhm", "project_data.gpkg") +gdf.to_file(gpkg_file, layer="area", engine="pyogrio") + +# %% diff --git a/pixi.lock b/pixi.lock index c978f48..8758d27 100644 --- a/pixi.lock +++ b/pixi.lock @@ -1,4 +1,3 @@ -version: 3 metadata: content_hash: linux-64: e90c2ee71ad70fc0a1c8302029533a7d1498f2bffcd0eaa8d2934700e775dc1d @@ -276,6 +275,66 @@ package: noarch: python size: 100177 timestamp: 1700835583246 +- platform: linux-64 + name: appdirs + version: 1.4.4 + category: main + manager: conda + dependencies: + - python + url: https://conda.anaconda.org/conda-forge/noarch/appdirs-1.4.4-pyh9f0ad1d_0.tar.bz2 + hash: + md5: 5f095bc6454094e96f146491fd03633b + sha256: ae9fb8f68281f84482f2c234379aa12405a9e365151d43af20b3ae1f17312111 + build: pyh9f0ad1d_0 + arch: x86_64 + subdir: linux-64 + build_number: 0 + license: MIT + license_family: MIT + noarch: python + size: 12840 + timestamp: 1603108499239 +- platform: osx-64 + name: appdirs + version: 1.4.4 + category: main + manager: conda + dependencies: + - python + url: https://conda.anaconda.org/conda-forge/noarch/appdirs-1.4.4-pyh9f0ad1d_0.tar.bz2 + hash: + md5: 5f095bc6454094e96f146491fd03633b + sha256: ae9fb8f68281f84482f2c234379aa12405a9e365151d43af20b3ae1f17312111 + build: pyh9f0ad1d_0 + arch: x86_64 + subdir: osx-64 + build_number: 0 + license: MIT + license_family: MIT + noarch: python + size: 12840 + timestamp: 1603108499239 +- platform: win-64 + name: appdirs + version: 1.4.4 + category: main + manager: conda + dependencies: + - python + url: https://conda.anaconda.org/conda-forge/noarch/appdirs-1.4.4-pyh9f0ad1d_0.tar.bz2 + hash: + md5: 5f095bc6454094e96f146491fd03633b + sha256: ae9fb8f68281f84482f2c234379aa12405a9e365151d43af20b3ae1f17312111 + build: pyh9f0ad1d_0 + arch: x86_64 + subdir: win-64 + build_number: 0 + license: MIT + license_family: MIT + noarch: python + size: 12840 + timestamp: 1603108499239 - platform: osx-64 name: appnope version: 0.1.3 @@ -2485,6 +2544,66 @@ package: noarch: python size: 11065 timestamp: 1615209567874 +- platform: linux-64 + name: cachetools + version: 5.3.2 + category: main + manager: conda + dependencies: + - python >=3.7 + url: https://conda.anaconda.org/conda-forge/noarch/cachetools-5.3.2-pyhd8ed1ab_0.conda + hash: + md5: 185cc1bf1d5af90020292888a3c7eb5d + sha256: cb8a6688d5650e4546a5f3c5b825bfe3c82594f1f588a93817f1bdb23e74baad + build: pyhd8ed1ab_0 + arch: x86_64 + subdir: linux-64 + build_number: 0 + license: MIT + license_family: MIT + noarch: python + size: 14739 + timestamp: 1698197442391 +- platform: osx-64 + name: cachetools + version: 5.3.2 + category: main + manager: conda + dependencies: + - python >=3.7 + url: https://conda.anaconda.org/conda-forge/noarch/cachetools-5.3.2-pyhd8ed1ab_0.conda + hash: + md5: 185cc1bf1d5af90020292888a3c7eb5d + sha256: cb8a6688d5650e4546a5f3c5b825bfe3c82594f1f588a93817f1bdb23e74baad + build: pyhd8ed1ab_0 + arch: x86_64 + subdir: osx-64 + build_number: 0 + license: MIT + license_family: MIT + noarch: python + size: 14739 + timestamp: 1698197442391 +- platform: win-64 + name: cachetools + version: 5.3.2 + category: main + manager: conda + dependencies: + - python >=3.7 + url: https://conda.anaconda.org/conda-forge/noarch/cachetools-5.3.2-pyhd8ed1ab_0.conda + hash: + md5: 185cc1bf1d5af90020292888a3c7eb5d + sha256: cb8a6688d5650e4546a5f3c5b825bfe3c82594f1f588a93817f1bdb23e74baad + build: pyhd8ed1ab_0 + arch: x86_64 + subdir: win-64 + build_number: 0 + license: MIT + license_family: MIT + noarch: python + size: 14739 + timestamp: 1698197442391 - platform: linux-64 name: cairo version: 1.18.0 @@ -3953,6 +4072,66 @@ package: license_family: MIT size: 3430198 timestamp: 1693244283213 +- platform: linux-64 + name: et_xmlfile + version: 1.1.0 + category: main + manager: conda + dependencies: + - python >=3.6 + url: https://conda.anaconda.org/conda-forge/noarch/et_xmlfile-1.1.0-pyhd8ed1ab_0.conda + hash: + md5: a2f2138597905eaa72e561d8efb42cf3 + sha256: 0c7bb50e1382615a660468dc531b8b17c5b91b88a02ed131c8e3cc63db507ce2 + build: pyhd8ed1ab_0 + arch: x86_64 + subdir: linux-64 + build_number: 0 + license: MIT + license_family: MIT + noarch: python + size: 10602 + timestamp: 1674664251571 +- platform: osx-64 + name: et_xmlfile + version: 1.1.0 + category: main + manager: conda + dependencies: + - python >=3.6 + url: https://conda.anaconda.org/conda-forge/noarch/et_xmlfile-1.1.0-pyhd8ed1ab_0.conda + hash: + md5: a2f2138597905eaa72e561d8efb42cf3 + sha256: 0c7bb50e1382615a660468dc531b8b17c5b91b88a02ed131c8e3cc63db507ce2 + build: pyhd8ed1ab_0 + arch: x86_64 + subdir: osx-64 + build_number: 0 + license: MIT + license_family: MIT + noarch: python + size: 10602 + timestamp: 1674664251571 +- platform: win-64 + name: et_xmlfile + version: 1.1.0 + category: main + manager: conda + dependencies: + - python >=3.6 + url: https://conda.anaconda.org/conda-forge/noarch/et_xmlfile-1.1.0-pyhd8ed1ab_0.conda + hash: + md5: a2f2138597905eaa72e561d8efb42cf3 + sha256: 0c7bb50e1382615a660468dc531b8b17c5b91b88a02ed131c8e3cc63db507ce2 + build: pyhd8ed1ab_0 + arch: x86_64 + subdir: win-64 + build_number: 0 + license: MIT + license_family: MIT + noarch: python + size: 10602 + timestamp: 1674664251571 - platform: linux-64 name: exceptiongroup version: 1.2.0 @@ -5189,6 +5368,96 @@ package: license: MIT size: 1579654 timestamp: 1701621250532 +- platform: linux-64 + name: geocube + version: 0.4.2 + category: main + manager: conda + dependencies: + - appdirs + - click >=6.0 + - geopandas >=0.7 + - numpy >=1.20 + - odc-geo + - pyproj >=2 + - python >=3.9 + - rasterio + - rioxarray >=0.4 + - scipy + - xarray >=0.17 + url: https://conda.anaconda.org/conda-forge/noarch/geocube-0.4.2-pyhd8ed1ab_1.conda + hash: + md5: 0d021ab36a19d5c7b90b25945ed737f1 + sha256: 6d59c88c1bd4897f4eaee53fb85c09c46bac8e975e8e8ea36b9bb3567744532e + build: pyhd8ed1ab_1 + arch: x86_64 + subdir: linux-64 + build_number: 1 + license: BSD-3-Clause + license_family: BSD + noarch: python + size: 22836 + timestamp: 1684946573164 +- platform: osx-64 + name: geocube + version: 0.4.2 + category: main + manager: conda + dependencies: + - appdirs + - click >=6.0 + - geopandas >=0.7 + - numpy >=1.20 + - odc-geo + - pyproj >=2 + - python >=3.9 + - rasterio + - rioxarray >=0.4 + - scipy + - xarray >=0.17 + url: https://conda.anaconda.org/conda-forge/noarch/geocube-0.4.2-pyhd8ed1ab_1.conda + hash: + md5: 0d021ab36a19d5c7b90b25945ed737f1 + sha256: 6d59c88c1bd4897f4eaee53fb85c09c46bac8e975e8e8ea36b9bb3567744532e + build: pyhd8ed1ab_1 + arch: x86_64 + subdir: osx-64 + build_number: 1 + license: BSD-3-Clause + license_family: BSD + noarch: python + size: 22836 + timestamp: 1684946573164 +- platform: win-64 + name: geocube + version: 0.4.2 + category: main + manager: conda + dependencies: + - appdirs + - click >=6.0 + - geopandas >=0.7 + - numpy >=1.20 + - odc-geo + - pyproj >=2 + - python >=3.9 + - rasterio + - rioxarray >=0.4 + - scipy + - xarray >=0.17 + url: https://conda.anaconda.org/conda-forge/noarch/geocube-0.4.2-pyhd8ed1ab_1.conda + hash: + md5: 0d021ab36a19d5c7b90b25945ed737f1 + sha256: 6d59c88c1bd4897f4eaee53fb85c09c46bac8e975e8e8ea36b9bb3567744532e + build: pyhd8ed1ab_1 + arch: x86_64 + subdir: win-64 + build_number: 1 + license: BSD-3-Clause + license_family: BSD + noarch: python + size: 22836 + timestamp: 1684946573164 - platform: linux-64 name: geopandas version: 0.14.1 @@ -14805,6 +15074,84 @@ package: license_family: BSD size: 6393785 timestamp: 1700875379700 +- platform: linux-64 + name: odc-geo + version: 0.4.1 + category: main + manager: conda + dependencies: + - affine + - cachetools + - numpy + - pyproj >=3.0.0 + - python >=3.8 + - shapely + - xarray >=0.19 + url: https://conda.anaconda.org/conda-forge/noarch/odc-geo-0.4.1-pyhd8ed1ab_0.conda + hash: + md5: ab03d1e7d156b588fa5c0d232949b8a9 + sha256: 036f1dde110f0de541e25b8cfbbbc3e91e7f4e8171b4374f90357e5eede8b3d6 + build: pyhd8ed1ab_0 + arch: x86_64 + subdir: linux-64 + build_number: 0 + license: Apache-2.0 + license_family: APACHE + noarch: python + size: 106404 + timestamp: 1687839858568 +- platform: osx-64 + name: odc-geo + version: 0.4.1 + category: main + manager: conda + dependencies: + - affine + - cachetools + - numpy + - pyproj >=3.0.0 + - python >=3.8 + - shapely + - xarray >=0.19 + url: https://conda.anaconda.org/conda-forge/noarch/odc-geo-0.4.1-pyhd8ed1ab_0.conda + hash: + md5: ab03d1e7d156b588fa5c0d232949b8a9 + sha256: 036f1dde110f0de541e25b8cfbbbc3e91e7f4e8171b4374f90357e5eede8b3d6 + build: pyhd8ed1ab_0 + arch: x86_64 + subdir: osx-64 + build_number: 0 + license: Apache-2.0 + license_family: APACHE + noarch: python + size: 106404 + timestamp: 1687839858568 +- platform: win-64 + name: odc-geo + version: 0.4.1 + category: main + manager: conda + dependencies: + - affine + - cachetools + - numpy + - pyproj >=3.0.0 + - python >=3.8 + - shapely + - xarray >=0.19 + url: https://conda.anaconda.org/conda-forge/noarch/odc-geo-0.4.1-pyhd8ed1ab_0.conda + hash: + md5: ab03d1e7d156b588fa5c0d232949b8a9 + sha256: 036f1dde110f0de541e25b8cfbbbc3e91e7f4e8171b4374f90357e5eede8b3d6 + build: pyhd8ed1ab_0 + arch: x86_64 + subdir: win-64 + build_number: 0 + license: Apache-2.0 + license_family: APACHE + noarch: python + size: 106404 + timestamp: 1687839858568 - platform: linux-64 name: openjpeg version: 2.5.0 @@ -14874,6 +15221,73 @@ package: license_family: BSD size: 236847 timestamp: 1694708878963 +- platform: linux-64 + name: openpyxl + version: 3.1.2 + category: main + manager: conda + dependencies: + - et_xmlfile + - libgcc-ng >=12 + - python >=3.12.0rc3,<3.13.0a0 + - python_abi 3.12.* *_cp312 + url: https://conda.anaconda.org/conda-forge/linux-64/openpyxl-3.1.2-py312h98912ed_1.conda + hash: + md5: 7f4e257ea4714e9166a93b733b26c2da + sha256: e0c61ee0f467aa2ee93315f0612d86a1b62551572d4a38cb69fcde8b81d73d14 + build: py312h98912ed_1 + arch: x86_64 + subdir: linux-64 + build_number: 1 + license: MIT + license_family: MIT + size: 694521 + timestamp: 1695464937608 +- platform: osx-64 + name: openpyxl + version: 3.1.2 + category: main + manager: conda + dependencies: + - et_xmlfile + - python >=3.12.0rc3,<3.13.0a0 + - python_abi 3.12.* *_cp312 + url: https://conda.anaconda.org/conda-forge/osx-64/openpyxl-3.1.2-py312h104f124_1.conda + hash: + md5: 37d146e56f7725d3865b72fe2d389484 + sha256: cd8bf57b42fe405f1849f840f3ef0d818e1c070466e26cdd9e569236bf30d65d + build: py312h104f124_1 + arch: x86_64 + subdir: osx-64 + build_number: 1 + license: MIT + license_family: MIT + size: 656343 + timestamp: 1695465049261 +- platform: win-64 + name: openpyxl + version: 3.1.2 + category: main + manager: conda + dependencies: + - et_xmlfile + - python >=3.12.0rc3,<3.13.0a0 + - python_abi 3.12.* *_cp312 + - ucrt >=10.0.20348.0 + - vc >=14.2,<15 + - vc14_runtime >=14.29.30139 + url: https://conda.anaconda.org/conda-forge/win-64/openpyxl-3.1.2-py312he70551f_1.conda + hash: + md5: 62d8cadbe4cad81bfe3088168c434b14 + sha256: 4a766f6f23e76ad2fb76233d3f23b533309b99b9823127179ba98eaa8e60ae58 + build: py312he70551f_1 + arch: x86_64 + subdir: win-64 + build_number: 1 + license: MIT + license_family: MIT + size: 629289 + timestamp: 1695465331584 - platform: linux-64 name: openssl version: 3.2.0 @@ -19451,7 +19865,7 @@ package: timestamp: 1598024297745 - platform: linux-64 name: ribasim - version: 0.6.1 + version: 0.7.0 category: main manager: conda dependencies: @@ -19467,21 +19881,22 @@ package: - shapely >=2.0 - tomli - tomli-w - url: https://conda.anaconda.org/conda-forge/noarch/ribasim-0.6.1-pyhd8ed1ab_0.conda + url: https://conda.anaconda.org/conda-forge/noarch/ribasim-0.7.0-pyhd8ed1ab_0.conda hash: - md5: c6f7cda724cd5b63a3293d80e8cfba6d - sha256: e6dd3f375fc914dc6d657d46463fcbac3f01570d9f904cde3b8cfdcadd98efb6 + md5: 852993160e0975307bbc7c935afe4e83 + sha256: 7a8a4abb58d10c2d32d5ea961ebe4aa56f8a455aabfcd7d60b3146a53ecf0cea build: pyhd8ed1ab_0 arch: x86_64 subdir: linux-64 build_number: 0 license: MIT + license_family: MIT noarch: python - size: 23898 - timestamp: 1702048238025 + size: 23721 + timestamp: 1707142009641 - platform: osx-64 name: ribasim - version: 0.6.1 + version: 0.7.0 category: main manager: conda dependencies: @@ -19497,21 +19912,22 @@ package: - shapely >=2.0 - tomli - tomli-w - url: https://conda.anaconda.org/conda-forge/noarch/ribasim-0.6.1-pyhd8ed1ab_0.conda + url: https://conda.anaconda.org/conda-forge/noarch/ribasim-0.7.0-pyhd8ed1ab_0.conda hash: - md5: c6f7cda724cd5b63a3293d80e8cfba6d - sha256: e6dd3f375fc914dc6d657d46463fcbac3f01570d9f904cde3b8cfdcadd98efb6 + md5: 852993160e0975307bbc7c935afe4e83 + sha256: 7a8a4abb58d10c2d32d5ea961ebe4aa56f8a455aabfcd7d60b3146a53ecf0cea build: pyhd8ed1ab_0 arch: x86_64 subdir: osx-64 build_number: 0 license: MIT + license_family: MIT noarch: python - size: 23898 - timestamp: 1702048238025 + size: 23721 + timestamp: 1707142009641 - platform: win-64 name: ribasim - version: 0.6.1 + version: 0.7.0 category: main manager: conda dependencies: @@ -19527,18 +19943,97 @@ package: - shapely >=2.0 - tomli - tomli-w - url: https://conda.anaconda.org/conda-forge/noarch/ribasim-0.6.1-pyhd8ed1ab_0.conda + url: https://conda.anaconda.org/conda-forge/noarch/ribasim-0.7.0-pyhd8ed1ab_0.conda hash: - md5: c6f7cda724cd5b63a3293d80e8cfba6d - sha256: e6dd3f375fc914dc6d657d46463fcbac3f01570d9f904cde3b8cfdcadd98efb6 + md5: 852993160e0975307bbc7c935afe4e83 + sha256: 7a8a4abb58d10c2d32d5ea961ebe4aa56f8a455aabfcd7d60b3146a53ecf0cea build: pyhd8ed1ab_0 arch: x86_64 subdir: win-64 build_number: 0 license: MIT + license_family: MIT noarch: python - size: 23898 - timestamp: 1702048238025 + size: 23721 + timestamp: 1707142009641 +- platform: linux-64 + name: rioxarray + version: 0.15.0 + category: main + manager: conda + dependencies: + - numpy >=1.21 + - packaging + - pyproj >=2.2 + - python >=3.9 + - rasterio >=1.2 + - scipy + - xarray >=0.17 + url: https://conda.anaconda.org/conda-forge/noarch/rioxarray-0.15.0-pyhd8ed1ab_0.conda + hash: + md5: d0ce69099167a03cf0a1241f40284307 + sha256: 6230b475046bd74c7b12c0c9121c57a8e18337b40265813ba9bef0866ec20866 + build: pyhd8ed1ab_0 + arch: x86_64 + subdir: linux-64 + build_number: 0 + license: Apache-2.0 + license_family: Apache + noarch: python + size: 47286 + timestamp: 1692047062481 +- platform: osx-64 + name: rioxarray + version: 0.15.0 + category: main + manager: conda + dependencies: + - numpy >=1.21 + - packaging + - pyproj >=2.2 + - python >=3.9 + - rasterio >=1.2 + - scipy + - xarray >=0.17 + url: https://conda.anaconda.org/conda-forge/noarch/rioxarray-0.15.0-pyhd8ed1ab_0.conda + hash: + md5: d0ce69099167a03cf0a1241f40284307 + sha256: 6230b475046bd74c7b12c0c9121c57a8e18337b40265813ba9bef0866ec20866 + build: pyhd8ed1ab_0 + arch: x86_64 + subdir: osx-64 + build_number: 0 + license: Apache-2.0 + license_family: Apache + noarch: python + size: 47286 + timestamp: 1692047062481 +- platform: win-64 + name: rioxarray + version: 0.15.0 + category: main + manager: conda + dependencies: + - numpy >=1.21 + - packaging + - pyproj >=2.2 + - python >=3.9 + - rasterio >=1.2 + - scipy + - xarray >=0.17 + url: https://conda.anaconda.org/conda-forge/noarch/rioxarray-0.15.0-pyhd8ed1ab_0.conda + hash: + md5: d0ce69099167a03cf0a1241f40284307 + sha256: 6230b475046bd74c7b12c0c9121c57a8e18337b40265813ba9bef0866ec20866 + build: pyhd8ed1ab_0 + arch: x86_64 + subdir: win-64 + build_number: 0 + license: Apache-2.0 + license_family: Apache + noarch: python + size: 47286 + timestamp: 1692047062481 - platform: linux-64 name: rpds-py version: 0.13.2 @@ -22883,6 +23378,138 @@ package: license_family: BSD size: 61358 timestamp: 1699533495284 +- platform: linux-64 + name: xarray + version: 2023.11.0 + category: main + manager: conda + dependencies: + - numpy >=1.22 + - packaging >=21.3 + - pandas >=1.4 + - python >=3.9 + url: https://conda.anaconda.org/conda-forge/noarch/xarray-2023.11.0-pyhd8ed1ab_0.conda + hash: + md5: f445b20bac3db8f604a48592087b2d8f + sha256: 71a2000fd5f5065e8c9a184c3f9262b27c4a5eeb5366a6d7e4d267d28e9f07d9 + build: pyhd8ed1ab_0 + arch: x86_64 + subdir: linux-64 + build_number: 0 + constrains: + - zarr >=2.12 + - sparse >=0.13 + - netcdf4 >=1.6.0 + - cartopy >=0.20 + - toolz >=0.12 + - h5netcdf >=1.0 + - distributed >=2022.7 + - scipy >=1.8 + - matplotlib-base >=3.5 + - seaborn >=0.11 + - hdf5 >=1.12 + - numba >=0.55 + - h5py >=3.6 + - flox >=0.5 + - cftime >=1.6 + - pint >=0.19 + - iris >=3.2 + - dask-core >=2022.7 + - nc-time-axis >=1.4 + - bottleneck >=1.3 + license: Apache-2.0 + license_family: APACHE + noarch: python + size: 713393 + timestamp: 1700303846370 +- platform: osx-64 + name: xarray + version: 2023.11.0 + category: main + manager: conda + dependencies: + - numpy >=1.22 + - packaging >=21.3 + - pandas >=1.4 + - python >=3.9 + url: https://conda.anaconda.org/conda-forge/noarch/xarray-2023.11.0-pyhd8ed1ab_0.conda + hash: + md5: f445b20bac3db8f604a48592087b2d8f + sha256: 71a2000fd5f5065e8c9a184c3f9262b27c4a5eeb5366a6d7e4d267d28e9f07d9 + build: pyhd8ed1ab_0 + arch: x86_64 + subdir: osx-64 + build_number: 0 + constrains: + - zarr >=2.12 + - sparse >=0.13 + - netcdf4 >=1.6.0 + - cartopy >=0.20 + - toolz >=0.12 + - h5netcdf >=1.0 + - distributed >=2022.7 + - scipy >=1.8 + - matplotlib-base >=3.5 + - seaborn >=0.11 + - hdf5 >=1.12 + - numba >=0.55 + - h5py >=3.6 + - flox >=0.5 + - cftime >=1.6 + - pint >=0.19 + - iris >=3.2 + - dask-core >=2022.7 + - nc-time-axis >=1.4 + - bottleneck >=1.3 + license: Apache-2.0 + license_family: APACHE + noarch: python + size: 713393 + timestamp: 1700303846370 +- platform: win-64 + name: xarray + version: 2023.11.0 + category: main + manager: conda + dependencies: + - numpy >=1.22 + - packaging >=21.3 + - pandas >=1.4 + - python >=3.9 + url: https://conda.anaconda.org/conda-forge/noarch/xarray-2023.11.0-pyhd8ed1ab_0.conda + hash: + md5: f445b20bac3db8f604a48592087b2d8f + sha256: 71a2000fd5f5065e8c9a184c3f9262b27c4a5eeb5366a6d7e4d267d28e9f07d9 + build: pyhd8ed1ab_0 + arch: x86_64 + subdir: win-64 + build_number: 0 + constrains: + - zarr >=2.12 + - sparse >=0.13 + - netcdf4 >=1.6.0 + - cartopy >=0.20 + - toolz >=0.12 + - h5netcdf >=1.0 + - distributed >=2022.7 + - scipy >=1.8 + - matplotlib-base >=3.5 + - seaborn >=0.11 + - hdf5 >=1.12 + - numba >=0.55 + - h5py >=3.6 + - flox >=0.5 + - cftime >=1.6 + - pint >=0.19 + - iris >=3.2 + - dask-core >=2022.7 + - nc-time-axis >=1.4 + - bottleneck >=1.3 + license: Apache-2.0 + license_family: APACHE + noarch: python + size: 713393 + timestamp: 1700303846370 - platform: linux-64 name: xcb-util version: 0.4.0 @@ -23802,3 +24429,4 @@ package: license_family: BSD size: 343428 timestamp: 1693151615801 +version: 1 diff --git a/pixi.toml b/pixi.toml index 0c91a2f..a45ffaa 100644 --- a/pixi.toml +++ b/pixi.toml @@ -51,11 +51,13 @@ tests = { depends_on = [ [dependencies] fiona = "*" +geocube = "*" geopandas = "*" ipykernel = "*" jupyterlab = "*" matplotlib = "*" mypy = "*" +openpyxl = "*" pandas = "*" pip = "*" pre-commit = "*" @@ -70,7 +72,7 @@ quarto = "*" quartodoc = "*" rasterstats = "*" requests = "*" -ribasim = ">=0.6.1,<0.7" +ribasim = "==0.7.0" ruff = "*" shapely = ">=2" tomli = "*" diff --git a/ruff.toml b/ruff.toml index 2d1f0de..6c6cc6a 100644 --- a/ruff.toml +++ b/ruff.toml @@ -1,6 +1,6 @@ # See https://docs.astral.sh/ruff/rules/ select = ["D", "E", "F", "NPY", "PD", "C4", "I", "UP"] -ignore = ["D1", "D202", "D205", "D400", "D404", "E501", "PD002", "PD901"] +ignore = ["D1", "D202", "D205", "D400", "D404", "E501", "PD002", "PD008", "PD901"] fixable = ["I"] extend-include = ["*.ipynb"] exclude = ["scripts/*"] diff --git a/src/ribasim_nl/ribasim_nl/__init__.py b/src/ribasim_nl/ribasim_nl/__init__.py index 6fa0cce..5c0c49f 100644 --- a/src/ribasim_nl/ribasim_nl/__init__.py +++ b/src/ribasim_nl/ribasim_nl/__init__.py @@ -2,5 +2,6 @@ from ribasim_nl.cloud import CloudStorage from ribasim_nl.network import Network +from ribasim_nl.reset_index import reset_index -__all__ = ["CloudStorage", "Network"] +__all__ = ["CloudStorage", "Network", "reset_index"] diff --git a/src/ribasim_nl/ribasim_nl/case_conversions.py b/src/ribasim_nl/ribasim_nl/case_conversions.py new file mode 100644 index 0000000..5a7bee1 --- /dev/null +++ b/src/ribasim_nl/ribasim_nl/case_conversions.py @@ -0,0 +1,13 @@ +def snake_to_pascal_case(snake_case: str) -> str: + """Convert snake_case to PascalCase""" + + words = snake_case.split("_") + return "".join(i.title() for i in words) + + +def pascal_to_snake_case(pascal_case: str) -> str: + """Convert PascalCase to snake_case""" + + return "".join(["_" + i.lower() if i.isupper() else i for i in pascal_case]).lstrip( + "_" + ) diff --git a/src/ribasim_nl/ribasim_nl/cloud.py b/src/ribasim_nl/ribasim_nl/cloud.py index ed25649..34b156c 100644 --- a/src/ribasim_nl/ribasim_nl/cloud.py +++ b/src/ribasim_nl/ribasim_nl/cloud.py @@ -1,4 +1,3 @@ -# %% import logging import os import re @@ -58,6 +57,14 @@ class ModelVersion: month: int revision: int + @property + def version(self): + return f"{self.year}.{self.month}.{self.revision}" + + @property + def path_string(self): + return f"{self.model}_{self.year}_{self.month}_{self.revision}" + @dataclass class CloudStorage: diff --git a/src/ribasim_nl/ribasim_nl/concat.py b/src/ribasim_nl/ribasim_nl/concat.py new file mode 100644 index 0000000..5e214c2 --- /dev/null +++ b/src/ribasim_nl/ribasim_nl/concat.py @@ -0,0 +1,77 @@ +import pandas as pd +import ribasim +from ribasim import Model + +from ribasim_nl import reset_index +from ribasim_nl.case_conversions import pascal_to_snake_case +from ribasim_nl.model import CLASS_TABLES, get_table + + +def concat(models: list[Model]) -> Model: + """Concat existing models to one Ribasim-model + + Parameters + ---------- + models : list[Model] + List with ribasim.Model + + Returns + ------- + Model + concatenated ribasim.Model + """ + + # models will be concatenated to first model. + model = reset_index(models[0]) + # determine node_start of next model + node_start = model.network.node.df.index.max() + 1 + # concat all other models into model + + for merge_model in models[1:]: + # reset index + merge_model = reset_index(merge_model, node_start) + + # determine node_start of next model + node_start = model.network.node.df.index.max() + 1 + + # merge network + model.network.node = ribasim.Node( + df=pd.concat([model.network.node.df, merge_model.network.node.df]) + ) + model.network.edge = ribasim.Edge( + df=pd.concat( + [model.network.edge.df, merge_model.network.edge.df], ignore_index=True + ).reset_index() + ) + + # merge all non-spatial tables + for class_name, attrs in CLASS_TABLES.items(): + # convert class-name to model attribute + class_attr = pascal_to_snake_case(class_name) + + # read all tables and temporary store them in a dict + tables = {} + for attr in attrs: + # table string + table = f"{class_attr}.{attr}.df" + + # see if there is a table to concatenate + merge_model_df = get_table(merge_model, table) + model_df = get_table(model, table) + + if merge_model_df is not None: + if model_df is not None: + # make sure we concat both df's into the correct ribasim-object + df = pd.concat([model_df, merge_model_df], ignore_index=True) + else: + df = merge_model_df + tables[attr] = df + elif model_df is not None: + tables[attr] = model_df + + # now we gently update the Ribasim class with new tables + if tables: + table_class = getattr(ribasim, class_name) + setattr(model, class_attr, table_class(**tables)) + + return model diff --git a/src/ribasim_nl/ribasim_nl/data/styles/links.qml b/src/ribasim_nl/ribasim_nl/data/styles/links.qml new file mode 100644 index 0000000..a893050 --- /dev/null +++ b/src/ribasim_nl/ribasim_nl/data/styles/links.qml @@ -0,0 +1,620 @@ + + + + 1 + 1 + 1 + 0 + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 0 + 0 + 1 + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 0 + + + 0 + generatedlayout + + + + + + + + + + + + + + + + + + + + + + + + "fid" + + 1 + diff --git a/src/ribasim_nl/ribasim_nl/data/styles/links.sld b/src/ribasim_nl/ribasim_nl/data/styles/links.sld new file mode 100644 index 0000000..8c554c9 --- /dev/null +++ b/src/ribasim_nl/ribasim_nl/data/styles/links.sld @@ -0,0 +1,34 @@ + + + + links + + links + + + Single symbol + + + + + + name + + + Arial + 13 + + + + true + + + + #323232 + + + + + + + diff --git a/src/ribasim_nl/ribasim_nl/data/styles/nodes.qml b/src/ribasim_nl/ribasim_nl/data/styles/nodes.qml new file mode 100644 index 0000000..b994809 --- /dev/null +++ b/src/ribasim_nl/ribasim_nl/data/styles/nodes.qml @@ -0,0 +1,632 @@ + + + + 1 + 1 + 1 + 0 + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 0 + 0 + 1 + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 0 + + + 0 + generatedlayout + + + + + + + + + + + + + + + + + + "fid" + + 0 + diff --git a/src/ribasim_nl/ribasim_nl/data/styles/nodes.sld b/src/ribasim_nl/ribasim_nl/data/styles/nodes.sld new file mode 100644 index 0000000..1281e9c --- /dev/null +++ b/src/ribasim_nl/ribasim_nl/data/styles/nodes.sld @@ -0,0 +1,115 @@ + + + + nodes + + nodes + + + connection + + connection + + + + type + connection + + + + + + circle + + #4c25da + + + #232323 + 0.5 + + + 7 + + + + + downstream_boundary + + downstream_boundary + + + + type + downstream_boundary + + + + + + circle + + #f31322 + + + #232323 + 0.5 + + + 7 + + + + + upstream_boundary + + upstream_boundary + + + + type + upstream_boundary + + + + + + circle + + #33a02c + + + #232323 + 0.5 + + + 7 + + + + + + + node_id + + + Arial + 13 + + + + + 0 + 0.5 + + + + + #323232 + + 1 + + + + + + diff --git a/src/ribasim_nl/ribasim_nl/discrete_control.py b/src/ribasim_nl/ribasim_nl/discrete_control.py new file mode 100644 index 0000000..b72d407 --- /dev/null +++ b/src/ribasim_nl/ribasim_nl/discrete_control.py @@ -0,0 +1,46 @@ +from pandas import DataFrame + + +def control_state(name: str, length: int) -> list[str]: + return [f"{name}_{i+1}" for i in range(length)] + + +def condition( + values: list[float], + node_id: int, + listen_feature_id: int, + variable: str = "flow_rate", + name: str | None = None, +) -> DataFrame: + df = DataFrame({"greater_than": values}) + df.loc[:, ["node_id"]] = node_id + df.loc[:, ["listen_feature_id"]] = listen_feature_id + df.loc[:, ["variable"]] = variable + df.loc[:, ["remarks"]] = control_state(name, len(df)) + return df + + +def logic( + node_id: int, + length: int, + name: str | None = None, +) -> DataFrame: + df = DataFrame( + { + "truth_state": [ + "".join(["T"] * i + ["F"] * length)[0:length] for i in range(length) + ] + } + ) + df.loc[:, ["node_id"]] = node_id + df.loc[:, ["control_state"]] = control_state(name, len(df)) + return df + + +def node_table(values: list[float], variable: str, name: str, **kwargs) -> DataFrame: + df = DataFrame({variable: values}) + df.loc[:, ["control_state"]] = control_state(name, len(df)) + for k, v in kwargs.items(): + df.loc[:, [k]] = v + + return df diff --git a/src/ribasim_nl/ribasim_nl/geodataframe.py b/src/ribasim_nl/ribasim_nl/geodataframe.py index d743399..4d6d32f 100644 --- a/src/ribasim_nl/ribasim_nl/geodataframe.py +++ b/src/ribasim_nl/ribasim_nl/geodataframe.py @@ -4,8 +4,11 @@ import geopandas as gpd import pandas as pd from geopandas import GeoDataFrame +from shapely.geometry import MultiPolygon, Polygon +from shapely.ops import polylabel -from ribasim_nl.geometry import split_basin +from ribasim_nl import Network +from ribasim_nl.geometry import sort_basins, split_basin def join_by_poly_overlay( @@ -90,7 +93,7 @@ def split_basins(basins_gdf: GeoDataFrame, lines_gdf: GeoDataFrame) -> GeoDataFr ## filter polygons with two intersection-points only poly_select_gdf = poly_select_gdf[ poly_select_gdf.geometry.boundary.intersection(line.geometry).apply( - lambda x: False if x.geom_type == "Point" else len(x.geoms) == 2 + lambda x: not x.geom_type == "Point" ) ] @@ -100,7 +103,7 @@ def split_basins(basins_gdf: GeoDataFrame, lines_gdf: GeoDataFrame) -> GeoDataFr f"no intersect for {line}. Please make sure it is extended outside the basin on two sides" ) else: - ## we create 2 new fatures in data + ## we create new features data = [] for basin in poly_select_gdf.itertuples(): kwargs = basin._asdict() @@ -241,3 +244,94 @@ def find_ident(point): ) return poly_directions_gdf + + +def basins_to_points( + basins_gdf: GeoDataFrame, + network: Network, + mask: Polygon | None = None, + buffer: int | None = None, +) -> GeoDataFrame: + """Get points within a basin + + Parameters + ---------- + basins_gdf : GeoDataFrame + GeoDataFrame with Polygon basins + network : Network + Ribasim-NL network to snap points on + mask : Polygon, optional + Optional mask to clip basin, by default None + buffer : int, optional + Buffer to apply on basin in case no point is found, by default None + + Returns + ------- + GeoDataFrame + Points within basin on network + """ + data = [] + if network is not None: + links_gdf = network.links + + def select_links(geometry): + idx = links_gdf.sindex.intersection(geometry.bounds) + links_select_gdf = links_gdf.iloc[idx] + links_select_gdf = links_select_gdf[links_select_gdf.within(geometry)] + return links_select_gdf + + for row in basins_gdf.itertuples(): + # get basin_polygon and centroid + basin_polygon = row.geometry + point = basin_polygon.centroid + node_id = None + + # get links within basin_polygon + if network is not None: + # we prefer to find selected links within mask + if mask is not None: + masked_basin_polygon = basin_polygon.intersection(mask) + links_select_gdf = select_links(masked_basin_polygon) + + # if not we try to find links within polygon + if links_select_gdf.empty: + links_select_gdf = select_links(basin_polygon) + + # if still not we try to find links within polygon applying a buffer + if links_select_gdf.empty and (buffer is not None): + links_select_gdf = select_links(basin_polygon.buffer(buffer)) + + # if we selected links, we snap to closest node + if not links_select_gdf.empty: + # get link maximum length + link = links_select_gdf.loc[ + links_select_gdf.geometry.length.sort_values(ascending=False).index[ + 0 + ] + ] + + # get distance to upstream and downstream point in the link + us_point, ds_point = link.geometry.boundary.geoms + us_dist, ds_dist = (i.distance(point) for i in [us_point, ds_point]) + + # choose closest point as basin point + if us_dist < ds_dist: + node_id = getattr(link, "node_from") + point = us_point + else: + node_id = getattr(link, "node_to") + point = ds_point + + # if we don't snap on network, we make sure point is within polygon + elif not point.within(basin_polygon): + # polylabel only works on polygons; we use largest polygon if input is MultiPolygon + if isinstance(basin_polygon, MultiPolygon): + basin_polygon = sort_basins(list(basin_polygon.geoms))[-1] + point = polylabel(basin_polygon) + + attributes = {i: getattr(row, i) for i in basins_gdf.columns} + attributes["geometry"] = point + attributes["node_id"] = node_id + data += [attributes] + + return gpd.GeoDataFrame(data, crs=basins_gdf.crs) diff --git a/src/ribasim_nl/ribasim_nl/model.py b/src/ribasim_nl/ribasim_nl/model.py new file mode 100644 index 0000000..269174a --- /dev/null +++ b/src/ribasim_nl/ribasim_nl/model.py @@ -0,0 +1,142 @@ +import geopandas as gpd +import pandas as pd +import ribasim +from ribasim import Model, Network +from shapely.geometry import LineString, Point + +from ribasim_nl.case_conversions import pascal_to_snake_case + +# TODO: get this from ribasim somehow +CLASS_TABLES = { + "Basin": ["static", "profile", "state"], + "LinearResistance": ["static"], + "ManningResistance": ["static"], + "Pump": ["static"], + "Outlet": ["static"], + "Terminal": ["static"], + "FlowBoundary": ["static"], + "LevelBoundary": ["static", "time"], + "FractionalFlow": ["static"], + "TabulatedRatingCurve": ["static"], +} + +TABLES = [ + j + for r in [ + [f"{pascal_to_snake_case(k)}.{i}.df" for i in v] + for k, v in CLASS_TABLES.items() + ] + for j in r +] + + +def get_table(model: Model, table: str = "basin.static.df"): + if table not in TABLES: + raise ValueError(f"the value of table should be in {TABLES} not {table}") + + else: + attributes = table.split(".") + value = model + for attr in attributes: + if hasattr(value, attr): + value = getattr(value, attr) + else: + return None + return value + + +def add_control_node_to_network( + network: Network, + node_ids: list[int], + offset=100, + offset_node_id: int | None = None, + ctrl_node_geom: tuple | None = None, + **kwargs, +) -> int: + """Add a control node and control edge to a ribasim.Network + + Parameters + ---------- + network : Network + Ribasim.Network with Node and Edge tables + node_ids : list[int] + Nodes to connect the control node + offset : int, optional + left-side offset of control node to node_id, in case len(node_ids) == 1 or offset_node_id is specified. + In other case this value is ignored. By default 100 + offset_node_id : int | None, optional + User can explicitly specify a offset_node_id for a left-offset of the control-node. by default None + ctrl_node_geom : tuple | None, optional + User can explicitly specify an (x, y) tuple . by default None + + + Extra kwargs will be added as attributes to the control-node + + Returns + ------- + network, int + updated network and node_id of the control-node + """ + + # see if we have one node-id to offset ctrl-node from + if offset_node_id is not None: + node_id = offset_node_id + elif len(node_ids) == 1: + node_id = node_ids[0] + + if ctrl_node_geom is None: + if node_id is not None: # if node-id we take the left-offset + linestring = ( + network.edge.df[network.edge.df["to_node_id"] == node_id] + .iloc[0] + .geometry + ) + ctrl_node_geom = Point( + linestring.parallel_offset(offset, "left").coords[-1] + ) + else: # if not we take the centroid of all node_ids + ctrl_node_geom = network.node.df[ + network.node.df.index.isin(node_ids) + ].unary_union.centroid + else: + ctrl_node_geom = Point(ctrl_node_geom) + + # ad the ctrl-node to the network + ctrl_node_id = network.node.df.index.max() + 1 + ctrl_node = { + "type": "DiscreteControl", + "meta_node_id": ctrl_node_id, + "geometry": ctrl_node_geom, + **kwargs, + } + + network.node.df.loc[ctrl_node_id] = ctrl_node + network.node.df.crs = 28992 + + # add edge(s) to the network + ctrl_edge_gdf = gpd.GeoDataFrame( + [ + { + "from_node_id": ctrl_node_id, + "to_node_id": i, + "edge_type": "control", + "geometry": LineString( + (ctrl_node_geom, network.node.df.at[i, "geometry"]) + ), + } + for i in node_ids + ] + ) + + network.edge = ribasim.Edge( + df=pd.concat([network.edge.df, ctrl_edge_gdf], ignore_index=True) + ) + return ctrl_node_id + + +def update_table(table, new_table): + node_ids = new_table.node_id.unique() + table = table[~table.node_id.isin(node_ids)] + table = pd.concat([table, new_table]) + table.reset_index(inplace=True) + return table diff --git a/src/ribasim_nl/ribasim_nl/network.py b/src/ribasim_nl/ribasim_nl/network.py index ce92b18..9230001 100644 --- a/src/ribasim_nl/ribasim_nl/network.py +++ b/src/ribasim_nl/ribasim_nl/network.py @@ -1,11 +1,31 @@ -from dataclasses import dataclass +import logging +from collections import Counter +from dataclasses import dataclass, field +from itertools import chain, product from pathlib import Path +import geopandas as gpd +import networkx as nx +import pandas as pd from geopandas import GeoDataFrame, GeoSeries -from networkx import Graph -from shapely.geometry import LineString, box +from networkx import DiGraph, Graph, NetworkXNoPath, shortest_path, traversal +from shapely.geometry import LineString, Point, box from shapely.ops import snap, split +from ribasim_nl.styles import add_styles_to_geopackage + +logger = logging.getLogger(__name__) + +GEOMETRIES_ALLOWED = ["LineString", "MultiLineString"] + + +def stop_iter(first_value, second_value): + # stop iteration if neither value is None and values are unequal + if all((pd.notna(first_value), pd.notna(second_value))): + return first_value != second_value + else: + return False + @dataclass class Network: @@ -20,10 +40,19 @@ class Network: Attributes ---------- lines_gdf : GeoDataFrame - GeoDataFrame with lines + GeoDataFrame with LineStrings + tolerance : float | None + tolerance for snapping nodes and filling gaps. Defaults to None + name_col: str + column in lines_gdf to preserve as 'name' column in network-links. Defaults to 'name' + id_col: str + column in lines_gdf to preserve as 'id' column in network-links. Defaults to 'id' Methods ------- + from_lines_gpkg(gpkg_file, layer=None, **kwargs) + returns a Network from a layer with LineStrings within a GeoPackage. + Optionally the user specifies a layer in a multilayer-GeoPackage. nodes returns GeoDataFrame with the nodes in the network links @@ -35,39 +64,65 @@ class Network: """ lines_gdf: GeoDataFrame + name_col: str | None = None + id_col: str | None = None tolerance: float | None = None - _graph: Graph | None = None - _nodes_gdf: GeoDataFrame | None = None - _links_gdf: GeoDataFrame | None = None + _graph: DiGraph | None = field(default=None, repr=False) + _graph_undirected: Graph | None = field(default=None, repr=False) - @property - def nodes(self) -> GeoDataFrame: - if self._nodes_gdf is None: - geoseries = self.lines_gdf.boundary.explode(index_parts=True).unique() - - # snap nodes within tolerance if it's set. We: - # 1. create polygons using buffer - # 2. dissolving to a multipolygon using unary_union - # 3. explode to individual polygons - # 4. convert to points taking the centroid - if self.tolerance is not None: - geoseries = ( - GeoSeries([geoseries.buffer(self.tolerance / 2).unary_union()]) - .explode(index_parts=False) - .reset_index(drop=True) - .centroid + def __post_init__(self): + self.validate_inputs() + + def validate_inputs(self): + """Validate if inputs are good-to-go for generating a graph""" + # check if name_col and id_col are valid values + for col in [self.name_col, self.id_col]: + if (col is not None) & (col not in self.lines_gdf.columns): + logger.warn( + f"{col} not a column in lines_gdf, input will be set to None" ) + col = None + + # check if lines_gdf only contains allowed geometries + geom_types = self.lines_gdf.geom_type.unique() + if not all(i in GEOMETRIES_ALLOWED for i in geom_types): + raise ValueError( + f"Only geom_types {GEOMETRIES_ALLOWED} are allowed. Got {geom_types}" + ) + + # explode to LineString + elif "MultiLineString" in geom_types: + self.lines_gdf = self.lines_gdf.explode(index_parts=False) - # make it a GeoDataFrame - self._nodes_gdf = GeoDataFrame(geometry=geoseries, crs=self.lines_gdf.crs) - # let's start index at 1 and name it node_id - self._nodes_gdf.index += 1 - self._nodes_gdf.index.name = "node_id" - return self._nodes_gdf + @classmethod + def from_lines_gpkg(cls, gpkg_file: str | Path, layer: str | None = None, **kwargs): + """Instantiate class from a lines_gpkg""" + lines_gdf = gpd.read_file(gpkg_file, layer=layer) + return cls(lines_gdf, **kwargs) + + @classmethod + def from_network_gpkg(cls, gpkg_file: str | Path, **kwargs): + """Instantiate class from a network gpkg""" + nodes_gdf = gpd.read_file(gpkg_file, layer="nodes", engine="pyogrio").set_index( + "node_id" + ) + links_gdf = gpd.read_file(gpkg_file, layer="links", engine="pyogrio").set_index( + ["node_from", "node_to"] + ) + graph = DiGraph() + graph.add_nodes_from(nodes_gdf.to_dict(orient="index").items()) + graph.add_edges_from( + [(k[0], k[1], v) for k, v in links_gdf.to_dict(orient="index").items()] + ) + + result = cls(links_gdf, **kwargs) + result.set_graph(graph) + return result @property def snap_tolerance(self): + """Snap tolerance for shapely.ops.snap""" if self.tolerance: return self.tolerance else: @@ -75,54 +130,65 @@ def snap_tolerance(self): @property def links(self) -> GeoDataFrame: - if self._links_gdf is None: - _ = self.graph - return self._links_gdf + """Return graph links as GeoDataFrame""" + # make sure we have a graph + _ = self.graph + return GeoDataFrame( + [ + {"node_from": i[0], "node_to": i[1], **i[2]} + for i in self.graph.edges.data() + ], + crs=self.lines_gdf.crs, + ) @property - def graph(self) -> Graph: - if self._graph is None: - links_data = [] - - # place first and last point if we have set tolerance - def add_link( - node_from, point_from, node_to, point_to, geometry, links_data - ): - if self.tolerance is not None: - geometry = LineString( - [(point_from.x, point_from.y)] - + geometry.coords[1:-1] - + [(point_to.x, point_to.y)] - ) - - # add edge to graph - self._graph.add_edge( - node_from, - node_to, - length=geometry.length, - geometry=geometry, - ) + def nodes(self) -> GeoDataFrame: + """Return graph nodes as GeoDataFrame""" + # make sure we have a graph + _ = self.graph + gdf = GeoDataFrame.from_dict( + {i[0]: i[1] for i in self.graph.nodes.data()}, + orient="index", + crs=self.lines_gdf.crs, + ) + gdf.index.name = "node_id" + return gdf - # add node_from, node_to to links - links_data += [ - {"node_from": node_from, "node_to": node_to, "geometry": geometry} - ] + @property + def graph_undirected(self) -> Graph: + if self._graph_undirected is None: + self._graph_undirected = Graph(self.graph) + return self._graph_undirected - self._graph = Graph() + @property + def graph(self) -> DiGraph: + if self._graph is None: + # see if input is valid + self.validate_inputs() + self._graph = DiGraph() # add nodes to graph - for row in self.nodes.itertuples(): # TODO: use feeding self.nodes as dict using self._graph.add_nodes_from may be faster + nodes_gdf = self.get_nodes() + for row in nodes_gdf.itertuples(): self._graph.add_node(row.Index, geometry=row.geometry) + # add edges using link_def + link_def = {} for row in self.lines_gdf.itertuples(): geometry = row.geometry + # provide id and name attributes if any + if self.id_col is not None: + link_def["id"] = getattr(row, self.id_col) + if self.name_col is not None: + link_def["name"] = getattr(row, self.name_col) + # select nodes of interest if self.tolerance: bounds = box(*geometry.bounds).buffer(self.tolerance).bounds else: bounds = row.geometry.bounds - nodes_select = self.nodes.iloc[self.nodes.sindex.intersection(bounds)] + nodes_select = nodes_gdf.iloc[nodes_gdf.sindex.intersection(bounds)] if self.tolerance is None: nodes_select = nodes_select[nodes_select.distance(geometry) == 0] else: @@ -135,58 +201,478 @@ def add_link( continue # More than one node. We order selected nodes by distance from start_node - nodes_select["distance"] = nodes_select.distance( - geometry.boundary.geoms[0] + nodes_select["distance"] = nodes_select.geometry.apply( + lambda x: geometry.project(x) ) nodes_select.sort_values("distance", inplace=True) # More than one node. We select start_node and point-geometry - node_from = nodes_select.index[0] - point_from = nodes_select.loc[node_from].geometry + link_def["node_from"] = nodes_select.index[0] + link_def["point_from"] = nodes_select.loc[ + link_def["node_from"] + ].geometry # More than two nodes. Line should be split into parts. We create one extra edge for every extra node if len(nodes_select) > 2: for node in nodes_select[1:-1].itertuples(): - node_to = node.Index - point_to = nodes_select.loc[node_to].geometry + link_def["node_to"] = node.Index + link_def["point_to"] = nodes_select.loc[ + link_def["node_to"] + ].geometry edge_geometry, geometry = split( - snap(geometry, point_to, self.snap_tolerance), point_to + snap(geometry, link_def["point_to"], self.snap_tolerance), + link_def["point_to"], ).geoms - add_link( - node_from, - point_from, - node_to, - point_to, - edge_geometry, - links_data, - ) - node_from = node_to - point_from = point_to + link_def["geometry"] = edge_geometry + self.add_link(**link_def) + link_def["node_from"] = link_def["node_to"] + link_def["point_from"] = link_def["point_to"] # More than one node. We finish the (last) edge - node_to = nodes_select.index[-1] - point_to = nodes_select.loc[node_to].geometry - add_link( - node_from, - point_from, - node_to, - point_to, - geometry, - links_data, - ) + link_def["node_to"] = nodes_select.index[-1] + link_def["point_to"] = nodes_select.loc[link_def["node_to"]].geometry + link_def["geometry"] = geometry + self.add_link(**link_def) + + # Set all node-types + self.set_node_types() - self._links_gdf = GeoDataFrame(links_data, crs=self.lines_gdf.crs) return self._graph + def add_link( + self, + node_from, + node_to, + geometry, + point_from=None, + point_to=None, + id=None, + name=None, + ): + """Add a link (edge) to the network""" + if self.tolerance is not None: + geometry = LineString( + [(point_from.x, point_from.y)] + + geometry.coords[1:-1] + + [(point_to.x, point_to.y)] + ) + + # add edge to graph + self._graph.add_edge( + node_from, + node_to, + name=name, + id=id, + length=geometry.length, + geometry=geometry, + ) + + def overlay(self, gdf): + cols = ["node_id"] + [i for i in gdf.columns if i != "geometry"] + gdf_overlay = gpd.overlay(self.nodes.reset_index(), gdf, how="intersection")[ + cols + ] + gdf_overlay = gdf_overlay[~gdf_overlay.duplicated(subset="node_id")] + + for row in gdf_overlay.itertuples(): + attrs = { + k: v for k, v in row._asdict().items() if k not in ["Index", "node_id"] + } + for k, v in attrs.items(): + self._graph.nodes[row.node_id][k] = v + + self._graph_undirected = None + + def upstream_nodes(self, node_id): + return [ + n + for n in traversal.bfs_tree(self._graph, node_id, reverse=True) + if n != node_id + ] + + def downstream_nodes(self, node_id): + return [n for n in traversal.bfs_tree(self._graph, node_id) if n != node_id] + + def has_upstream_nodes(self, node_id): + return len(self.upstream_nodes(node_id)) > 0 + + def has_downstream_nodes(self, node_id): + return len(self.downstream_nodes(node_id)) > 0 + + def find_upstream(self, node_id, attribute, max_iters=10): + upstream_nodes = self.upstream_nodes(node_id) + max_iters = min(max_iters, len(upstream_nodes)) + value = None + for idx in range(max_iters): + node = self._graph.nodes[upstream_nodes[idx]] + if attribute in node.keys(): + if pd.notna(node[attribute]): + value = node[attribute] + break + return value + + def find_downstream(self, node_id, attribute, max_iters=10): + downstream_nodes = self.downstream_nodes(node_id) + max_iters = min(max_iters, len(downstream_nodes)) + value = None + for idx in range(max_iters): + node = self._graph.nodes[downstream_nodes[idx]] + if attribute in node.keys(): + if pd.notna(node[attribute]): + value = node[attribute] + break + return value + + def get_downstream(self, node_id, attribute, max_iters=5): + downstream_nodes = self.downstream_nodes(node_id) + + # get max_iters, as we search downstream, our list should be even and double max_iters + nbr_nodes = len(downstream_nodes) + if nbr_nodes % 2 == 1: + nbr_nodes -= 1 + max_iters = min(nbr_nodes, max_iters * 2) + + first_value = None + second_value = None + + for idx in range(0, max_iters, 2): + first_node = self._graph.nodes[downstream_nodes[idx]] + second_node = self._graph.nodes[downstream_nodes[idx + 1]] + + if attribute in first_node.keys(): + if pd.notna(first_node[attribute]): + first_value = first_node[attribute] + if stop_iter(first_value, second_value): + break + + if attribute in second_node.keys(): + if pd.notna(pd.notna(second_node[attribute])): + second_value = second_node[attribute] + if stop_iter(first_value, second_value): + break + + return first_value, second_value + + def get_upstream_downstream(self, node_id, attribute, max_iters=5, max_length=2000): + # determine upstream and downstream nodes + upstream_nodes = self.upstream_nodes(node_id) + downstream_nodes = self.downstream_nodes(node_id) + + max_iters = min(max_iters, len(upstream_nodes), len(downstream_nodes)) + + upstream_value = None + downstream_value = None + + for idx in range(max_iters): + if ( + nx.shortest_path_length( + self.graph, + upstream_nodes[idx], + downstream_nodes[idx], + weight="length", + ) + > max_length + ): + break + us_node = self._graph.nodes[upstream_nodes[idx]] + ds_node = self._graph.nodes[downstream_nodes[idx]] + + if attribute in us_node.keys(): + if pd.notna(us_node[attribute]): + upstream_value = us_node[attribute] + if stop_iter(upstream_value, downstream_value): + break + + if attribute in ds_node.keys(): + if pd.notna(pd.notna(ds_node[attribute])): + downstream_value = ds_node[attribute] + if stop_iter(upstream_value, downstream_value): + break + + if upstream_value == downstream_value: + return None, None + else: + return upstream_value, downstream_value + + def move_node( + self, + point: Point, + max_distance: float, + align_distance: float, + node_types=["connection", "upstream_boundary", "downstream_boundary"], + ): + """Move network nodes and edges to new location + + Parameters + ---------- + point : Point + Point to move node to + max_distance : float + Max distance to find closes node + align_distance : float + Distance over edge, from node, where vertices will be removed to align adjacent edges with Point + """ + # take links and nodes as gdf + nodes_gdf = self.nodes + links_gdf = self.links + + # get closest connection-node + distances = ( + nodes_gdf[nodes_gdf["type"].isin(node_types)].distance(point).sort_values() + ) + node_id = distances.index[0] + node_distance = distances.iloc[0] + + # check if node is within max_distance + if node_distance <= max_distance: + # update graph node + self.graph.nodes[node_id]["geometry"] = point + + # update start-node of edges + edges_from = links_gdf[links_gdf.node_from == node_id] + for edge in edges_from.itertuples(): + geometry = edge.geometry + + # take first node from point + coords = list(point.coords) + + # take all in between boundaries only if > REMOVE_VERT_DIST + for coord in list( + self.graph.edges[(edge.node_from, edge.node_to)]["geometry"].coords + )[1:-1]: + if geometry.project(Point(coord)) > align_distance: + coords += [coord] + + # take the last from original geometry + coords += [geometry.coords[-1]] + + self.graph.edges[(edge.node_from, edge.node_to)][ + "geometry" + ] = LineString(coords) + + # update end-node of edges + edges_from = links_gdf[links_gdf.node_to == node_id] + for edge in edges_from.itertuples(): + geometry = edge.geometry + + # take first from original geometry + coords = [geometry.coords[0]] + + # take all in between boundaries only if > REMOVE_VERT_DIST + geometry = geometry.reverse() + for coord in list( + self.graph.edges[(edge.node_from, edge.node_to)]["geometry"].coords + )[1:-1]: + if geometry.project(Point(coord)) > align_distance: + coords += [coord] + + # take the last from point + coords += [(point.x, point.y)] + + self.graph.edges[(edge.node_from, edge.node_to)][ + "geometry" + ] = LineString(coords) + return node_id + else: + logger.warning( + f"No Node moved. Closest node: {node_id}, distance > max_distance ({node_distance} > {max_distance})" + ) + return None + + def add_node(self, point: Point, max_distance: float, align_distance: float): + # set _graph undirected to None + self._graph_undirected = None + + # get links + links_gdf = self.links + + # get closest edge and distances + distances = links_gdf.distance(point).sort_values() + edge_id = distances.index[0] + edge_distance = distances.iloc[0] + edge_geometry = links_gdf.at[edge_id, "geometry"] # noqa: PD008 + node_from = links_gdf.at[edge_id, "node_from"] # noqa: PD008 + node_to = links_gdf.at[edge_id, "node_to"] # noqa: PD008 + + if edge_distance <= max_distance: + # add node + node_id = max(self.graph.nodes) + 1 + node_geometry = edge_geometry.interpolate(edge_geometry.project(point)) + self.graph.add_node(node_id, geometry=node_geometry, type="connection") + + # add edges + self.graph.remove_edge(node_from, node_to) + us_geometry, ds_geometry = split( + snap(edge_geometry, node_geometry, 0.01), node_geometry + ).geoms + self.add_link(node_from, node_id, us_geometry) + self.add_link(node_id, node_to, ds_geometry) + + return self.move_node(point, max_distance=max_distance, align_distance=100) + else: + logger.warning( + f"No Node added. Closest edge: {edge_id}, distance > max_distance ({edge_distance} > {max_distance})" + ) + return None + def reset(self): self._graph = None - self._nodes_gdf = None - self._links_gdf = None + + def set_graph(self, graph: DiGraph): + """Set graph directly""" + self._graph = graph + + def get_path(self, node_from, node_to, directed=True): + if directed: + try: + return shortest_path(self.graph, node_from, node_to, weight="length") + except NetworkXNoPath: + print(f"found path undirected between {node_from} and {node_to}") + return shortest_path( + self.graph_undirected, node_from, node_to, weight="length" + ) + else: + return shortest_path( + self.graph_undirected, node_from, node_to, weight="length" + ) + + def get_links(self, node_from, node_to, directed=True): + path = self.get_path(node_from, node_to, directed) + edges_on_path = list(zip(path[:-1], path[1:])) + return self.links.set_index(["node_from", "node_to"]).loc[edges_on_path] + + def subset_links(self, nodes_from, nodes_to): + gdf = pd.concat( + [ + self.get_links(node_from, node_to) + for node_from, node_to in product(nodes_from, nodes_to) + ] + ) + gdf = gdf.reset_index().drop_duplicates(["node_from", "node_to"]).reset_index() + return gdf + + def subset_nodes( + self, nodes_from, nodes_to, inclusive=True, directed=True, duplicated_nodes=True + ): + def find_duplicates(lst, counts): + counter = Counter(lst) + duplicates = [item for item, count in counter.items() if count == counts] + return duplicates + + paths = [ + self.get_path(node_from, node_to, directed) + for node_from, node_to in product(nodes_from, nodes_to) + ] + + node_ids = list(chain(*paths)) + if duplicated_nodes: + node_ids = find_duplicates(node_ids, len(paths)) + else: + node_ids = list(set(chain(*paths))) + if not inclusive: + exclude_nodes = nodes_from + nodes_to + node_ids = [i for i in node_ids if i not in exclude_nodes] + return self.nodes.loc[node_ids] + + def _get_coordinates(self, node_from, node_to): + # get geometries from links + reverse = False + links = self.links + geometries = links.loc[ + (links.node_from == node_from) & (links.node_to == node_to), ["geometry"] + ] + if geometries.empty: + geometries = links.loc[ + (links.node_from == node_to) & (links.node_to == node_from), + ["geometry"], + ] + if not geometries.empty: + reverse = True + else: + raise ValueError( + f"{node_from}, {node_to} not valid start and end nodes in the network" + ) + + # select geometry + if len(geometries) > 1: + idx = geometries.length.sort_values(ascending=False).index[0] + geometry = geometries.loc[idx].geometry + elif len(geometries) == 1: + geometry = geometries.iloc[0].geometry + + # invert geometry + if reverse: + geometry = geometry.reverse() + + return list(geometry.coords) + + def path_to_line(self, path): + coords = [] + for node_from, node_to in zip(path[0:-1], path[1:]): + coords += self._get_coordinates(node_from, node_to) + return LineString(coords) + + def get_line(self, node_from, node_to, directed=True): + path = self.get_path(node_from, node_to, directed) + return self.path_to_line(path) + + def get_nodes(self) -> GeoDataFrame: + """Get nodes from lines_gdf + + Approach if tolerance is set: + 1. create polygons using buffer (tolerance/2) + 2. dissolving to a multipolygon using unary_union + 3. explode to individual polygons + 4. convert to points taking the centroid + + Returns + ------- + GeoDataFrame + GeoDataFrame with nodes and index + """ + geoseries = self.lines_gdf.boundary.explode(index_parts=True).unique() + + # snap nodes within tolerance if it's set. We: + + if self.tolerance is not None: + geoseries = ( + GeoSeries([geoseries.buffer(self.tolerance / 2).unary_union()]) + .explode(index_parts=False) + .reset_index(drop=True) + .centroid + ) + + # make it a GeoDataFrame + nodes_gdf = GeoDataFrame(geometry=geoseries, crs=self.lines_gdf.crs) + # let's start index at 1 and name it node_id + nodes_gdf.index += 1 + nodes_gdf.index.name = "node_id" + return nodes_gdf + + def set_node_types(self): + """Node types to seperate boundaries from connections""" + from_nodes = {i[0] for i in self.graph.edges} + to_nodes = {i[1] for i in self.graph.edges} + us_boundaries = [i for i in from_nodes if i not in to_nodes] + ds_boundaries = [i for i in to_nodes if i not in from_nodes] + for node_id in self._graph.nodes: + if node_id in us_boundaries: + self._graph.nodes[node_id]["type"] = "upstream_boundary" + elif node_id in ds_boundaries: + self._graph.nodes[node_id]["type"] = "downstream_boundary" + else: + self._graph.nodes[node_id]["type"] = "connection" def to_file(self, path: str | Path): + """Write output to geopackage""" path = Path(path) - # make sure graph is created - _ = self.graph + if path.suffix.lower() != ".gpkg": + raise ValueError( + f"{path} is not a GeoPackage, please provide a file with extention 'gpkg'" + ) + # write nodes and links - self.nodes.to_file(path, layer="nodes") - self.links.to_file(path, layer="links") + self.nodes.to_file(path, layer="nodes", engine="pyogrio") + self.links.to_file(path, layer="links", engine="pyogrio") + # add styles + add_styles_to_geopackage(path) diff --git a/src/ribasim_nl/ribasim_nl/raster.py b/src/ribasim_nl/ribasim_nl/raster.py new file mode 100644 index 0000000..9bb447a --- /dev/null +++ b/src/ribasim_nl/ribasim_nl/raster.py @@ -0,0 +1,177 @@ +import math +from pathlib import Path + +import geopandas as gpd +import numpy as np +import rasterio +from osgeo import gdal +from pandas import DataFrame +from rasterio import features # noqa:F401 +from rasterio.windows import from_bounds +from shapely.geometry import LineString, Polygon + +DEFAULT_PERCENTILES = [ + 0.01, + 0.1, + 1, + 5, + 10, + 20, + 30, + 40, + 50, + 60, + 70, + 80, + 90, + 95, + 99, + 99.9, + 99.99, + 100, +] + + +def build_vrt(raster_dir: Path): + """Build a vrt-file inside a directory of rasters. + + Important notes! + 1. Only tif-files will be included + 2. All rasters should be equal in coordinate reference system, dtype (probably also nodata) + + Parameters + ---------- + raster_dir : Path + _description_ + """ + + rasters_vrt = raster_dir / f"{raster_dir.name}.vrt" + if rasters_vrt.exists(): + rasters_vrt.unlink() + raster_files = [f"{i.as_posix()}" for i in raster_dir.glob("*.tif")] + + ds = gdal.VSIFOpenL(rasters_vrt.as_posix(), "w") + gdal.VSIFCloseL(ds) + + vrt_ds = gdal.BuildVRT(rasters_vrt.as_posix(), raster_files) + + for idx, raster_file in enumerate(raster_files): + file_name = Path(raster_file).name + subdataset_name = f"SUBDATASET_{idx}_NAME" + subdataset_description = f"SUBDATASET_{idx}_DESC" + vrt_ds.GetRasterBand(1).SetMetadataItem(subdataset_name, file_name) + vrt_ds.GetRasterBand(1).SetMetadataItem( + subdataset_description, f"File: {file_name}" + ) + + # Save the changes and close the VRT file + vrt_ds = None + + +def sample_level_area( + raster_path: Path, polygon: Polygon, ident=None, percentiles=DEFAULT_PERCENTILES +) -> DataFrame: + # Define the window coordinates (left, right, top, bottom) + + # Open raster and read window from polygon.bounds + with rasterio.open(raster_path) as src: + # Read the raster data within the specified window + window = from_bounds(*polygon.bounds, transform=src.transform) + profile = src.profile + window_data = src.read(1, window=window) + scales = src.scales + dx, dy = src.res + cell_area = dx * dy + + # get actual value if data is scaled + if scales[0] != 1: + window_data = np.where( + window_data == profile["nodata"], + profile["nodata"], + window_data * scales[0], + ) + + # Get the affine transformation associated with the window + window_transform = src.window_transform(window) + + # create a mask-array from polygon + mask = rasterio.features.geometry_mask( + [polygon], window_data.shape, window_transform, all_touched=False, invert=True + ) + + # include nodata as False in mask + mask[window_data == profile["nodata"]] = False + + # compute levels by percentiles + level = np.percentile(window_data[mask], percentiles) + + # compute areas by level and cell-area + area = [np.sum(mask & (window_data <= value)) * cell_area for value in level] + + df = DataFrame({"percentiles": percentiles, "level": level, "area": area}) + + if ident is not None: + print(f"sampled polygon {ident}") + df["id"] = ident + return df + + +def line_to_samples( + line: LineString, sample_dist: float, crs=28992 +) -> gpd.GeoDataFrame: + """Convert line to samples + + Parameters + ---------- + line : LineString + Input line + sample_dist : float + minimal distance along line + crs : int, optional + output projection, by default 28992 + + Returns + ------- + gpd.GeoDataFrame + GeoDataFrame with Point geometry and distance along the line + """ + nbr_points = math.ceil(line.length / sample_dist) + gdf = gpd.GeoDataFrame( + geometry=[ + line.interpolate(i / float(nbr_points - 1), normalized=True) + for i in range(nbr_points) + ], + crs=crs, + ) + gdf["distance"] = gdf.geometry.apply(lambda x: line.project(x)) + return gdf + + +def sample_elevation_distance(raster_path: Path, line: LineString) -> gpd.GeoDataFrame: + """Sample values over an elevation raster using a line + + Parameters + ---------- + raster_path : Path + Path to raster + line : LineString + LineString to sample at raster-resolution + + Returns + ------- + gpd.GeoDataFrame + GeoDataFrame with Point-geometry, distance along the line and elevation value + """ + + with rasterio.open(raster_path) as src: + sample_dist = abs(src.res[0]) + gdf = line_to_samples(line, sample_dist) + coords = zip(gdf["geometry"].x, gdf["geometry"].y) + gdf["elevation"] = [i[0] for i in src.sample(coords)] + + gdf = gdf[gdf.elevation != src.nodata] + # get actual value if data is scaled + if src.scales[0] != 1: + gdf["elevation"] = gdf["elevation"] * src.scales[0] + + return gdf diff --git a/src/ribasim_nl/ribasim_nl/rating_curve.py b/src/ribasim_nl/ribasim_nl/rating_curve.py new file mode 100644 index 0000000..f8c5fff --- /dev/null +++ b/src/ribasim_nl/ribasim_nl/rating_curve.py @@ -0,0 +1,20 @@ +from pathlib import Path + +import pandas as pd +from openpyxl import load_workbook +from pandas import DataFrame, Series + + +def read_rating_curve(file_path: Path, node_index: Series) -> DataFrame: + """Concat sheets in a verdeelsleutel.xlsx to 1 pandas dataframe.""" + wb = load_workbook(file_path) + sheet_names = wb.sheetnames + dfs = [] + for sheet_name in sheet_names: + if sheet_name != "disclaimer": + df = pd.read_excel(file_path, sheet_name=sheet_name) + df["code_waterbeheerder"] = sheet_name + df["node_id"] = node_index.loc[sheet_name] + dfs += [df] + + return pd.concat(dfs)[["node_id", "level", "flow_rate", "code_waterbeheerder"]] diff --git a/src/ribasim_nl/ribasim_nl/reset_index.py b/src/ribasim_nl/ribasim_nl/reset_index.py new file mode 100644 index 0000000..bc6faca --- /dev/null +++ b/src/ribasim_nl/ribasim_nl/reset_index.py @@ -0,0 +1,46 @@ +import pandas as pd +from ribasim import Model + +from ribasim_nl.model import TABLES, get_table + + +def reset_index(model: Model, node_start=1): + # only reset if we have to + fid_min = model.network.node.df.index.min() + fid_max = model.network.node.df.index.max() + expected_length = fid_max - fid_min + 1 + if not ( + (node_start == fid_min) and (expected_length == len(model.network.node.df)) + ): + # make sure column node_id == index + node_ids = model.network.node.df.index + model.network.node.df.loc[:, "fid"] = node_ids + + # create a new index for re-indexing all tables + index = pd.Series( + data=[i + node_start for i in range(len(node_ids))], index=node_ids + ) + + # re-index node_id and fid + model.network.node.df.index = model.network.node.df["fid"].apply( + lambda x: index.loc[x] + ) + model.network.node.df.index.name = "fid" + model.network.node.df.drop(columns=["fid"], inplace=True) + + # renumber edges + model.network.edge.df.loc[:, ["from_node_id"]] = model.network.edge.df[ + "from_node_id" + ].apply(lambda x: index.loc[x]) + + model.network.edge.df.loc[:, ["to_node_id"]] = model.network.edge.df[ + "to_node_id" + ].apply(lambda x: index.loc[x]) + + # renumber tables + for table in TABLES: + df = get_table(model, table) + if df is not None: + df.loc[:, ["node_id"]] = df["node_id"].apply(lambda x: index.loc[x]) + + return model diff --git a/src/ribasim_nl/ribasim_nl/styles.py b/src/ribasim_nl/ribasim_nl/styles.py new file mode 100644 index 0000000..f8d12fe --- /dev/null +++ b/src/ribasim_nl/ribasim_nl/styles.py @@ -0,0 +1,124 @@ +import re +import sqlite3 +from datetime import datetime +from pathlib import Path + +import fiona + +STYLES_DIR = Path(__file__).parent.joinpath("data", "styles") + +CREATE_TABLE_SQL = """ +CREATE TABLE "layer_styles" ( + "id" INTEGER PRIMARY KEY AUTOINCREMENT NOT NULL, + "f_table_catalog" TEXT(256), + "f_table_schema" TEXT(256), + "f_table_name" TEXT(256), + "f_geometry_column" TEXT(256), + "styleName" TEXT(30), + "styleQML" TEXT, + "styleSLD" TEXT, + "useAsDefault" BOOLEAN, + "description" TEXT, + "owner" TEXT(30), + "ui" TEXT(30), + "update_time" DATETIME DEFAULT (strftime('%Y-%m-%dT%H:%M:%fZ','now')) +); +""" +DROP_TABLE_SQL = """DROP TABLE IF EXISTS "layer_styles";""" + +INSERT_ROW_SQL = """ +INSERT INTO "main"."layer_styles" ( + "f_table_catalog", + "f_table_schema", + "f_table_name", + "f_geometry_column", + "styleName", + "styleQML", + "styleSLD", + "useAsDefault", + "description", + "owner", + "ui", + "update_time" +) +VALUES ( + '', + '', + '{layer}', + 'geom', + '{layer}', + '{style_qml}', + '{style_sld}', + '1', + '{description}', + '', + '', + '{update_date_time}' +); +""" + + +def read_style(style_path: Path) -> str: + """ + To make style-text sql-compatible, we need to replace single ' to ''. + Example 'http://mrcc.com/qgis.dtd -> ''http://mrcc.com/qgis.dtd'' + + Parameters + ---------- + style_path : Path + Path to sld-file + + Returns + ------- + str + style-string for SQL + + """ + style_txt = style_path.read_text() + + pattern = r"'(.*?)'" + style_txt = re.sub(pattern, lambda m: f"''{m.group(1)}''", style_txt) + + return style_txt + + +def add_styles_to_geopackage(gpkg_path: Path): + """ + Add styles to a HyDAMO GeoPackage + + Parameters + ---------- + gpkg_path : Path + Path to HyDAMO GeoPackage + + Returns + ------- + None. + + """ + + with sqlite3.connect(gpkg_path) as conn: + # create table + conn.execute(DROP_TABLE_SQL) + conn.execute(CREATE_TABLE_SQL) + + # add style per layer + for layer in fiona.listlayers(gpkg_path): + style_qml = STYLES_DIR / f"{layer}.qml" + style_sld = STYLES_DIR / f"{layer}.sld" + + # check if style exists + if style_qml.exists() and style_sld.exists(): + description = f"HyDAMO style for layer: {layer}" + update_date_time = f"{datetime.now().isoformat()}Z" + + # push to GeoPackage + conn.execute( + INSERT_ROW_SQL.format( + layer=layer, + style_qml=read_style(style_qml), + style_sld=read_style(style_sld), + description=description, + update_date_time=update_date_time, + ) + ) diff --git a/src/ribasim_nl/ribasim_nl/tables.py b/src/ribasim_nl/ribasim_nl/tables.py new file mode 100644 index 0000000..998b9d6 --- /dev/null +++ b/src/ribasim_nl/ribasim_nl/tables.py @@ -0,0 +1,99 @@ +import pandas as pd +from scipy import interpolate + + +def average_width(df_left: pd.DataFrame, df_right: pd.DataFrame) -> pd.DataFrame: + """Combine two DataFrames with width(level) to one average width(level) relation + + DataFrames should have columns 'level' and 'width'. Resulting DataFrame will contain all unique levels + and the average width of both dataframes. Widths will be linear interpolated if only in one of the two + DataFrames. + + Parameters + ---------- + df_left : pd.DataFrame + One DataFrame with width(level) relation + df_right : pd.DataFrame + Other DataFrame with width(level) relation + + Returns + ------- + pd.DataFrame + resulting DataFrame with width(level) relation + """ + # get unique levels + level = list(set(df_left["level"].to_list() + df_right["level"].to_list())) + + f_left = interpolate.interp1d( + df_left["level"].to_numpy(), df_left["width"].to_numpy(), bounds_error=False + ) + f_right = interpolate.interp1d( + df_right["level"].to_numpy(), df_right["width"].to_numpy(), bounds_error=False + ) + + width = (f_left(level) + f_right(level)) / 2 + + df = pd.DataFrame({"level": level, "width": width}) + + # where width is NaN, its out of bounds of bounds of left or right. We'll replace it with left or right + df_single = ( + pd.concat([df_left, df_right]) + .sort_values("level") + .drop_duplicates("level") + .reset_index(drop=True) + ) + df[df.width.isna()] = df_single[df.width.isna()] + + return df + + +def cumulative_area(df: pd.DataFrame) -> pd.Series: + """Calculate the cumulative_area from a DataFrame with width(level). + + Parameters + ---------- + df : pd.DataFrame + DataFrame with level and width columns + + Returns + ------- + pd.Series + Series with cumulative area + """ + + df.reset_index(drop=True, inplace=True) + df.sort_values("level", inplace=True) + + dx = df["level"] - df["level"].shift(fill_value=0) + dy = df["width"] - df["width"].shift(fill_value=0) + area = (df["width"].shift(fill_value=0) * dx) + (dy * dx) / 2 + area.loc[0] = 0 + return area.cumsum() + + +def manning_profile(df: pd.DataFrame) -> tuple[float, float]: + """Convert a DataFrame with a Width(level) relation to a manning profile_width and slope. + + DataFrame should have columns 'level' and 'width' + + Parameters + ---------- + df : pd.DataFrame + DataFrame with level and width columns + + Returns + ------- + Tuple[int, int] + Tuple with (profile_width, slope) values + """ + + dz = df["level"].max() - df["level"].min() + tw = df["width"].max() + + area = cumulative_area(df) + A = area.max() + bw = max(2 * A / (dz) - tw, 0) + dy = (tw - bw) / 2 + S = dy / dz + + return bw, S diff --git a/src/ribasim_nl/ribasim_nl/verdeelsleutels.py b/src/ribasim_nl/ribasim_nl/verdeelsleutels.py new file mode 100644 index 0000000..62f0569 --- /dev/null +++ b/src/ribasim_nl/ribasim_nl/verdeelsleutels.py @@ -0,0 +1,110 @@ +from pathlib import Path + +import pandas as pd +import ribasim +from openpyxl import load_workbook +from pandas import DataFrame, Series + +from ribasim_nl.model import add_control_node_to_network + + +def read_verdeelsleutel(file_path: Path) -> DataFrame: + """Concat sheets in a verdeelsleutel.xlsx to 1 pandas dataframe.""" + wb = load_workbook(file_path) + sheet_names = wb.sheetnames + return pd.concat([pd.read_excel(file_path, sheet_name=i) for i in sheet_names]) + + +def verdeelsleutel_to_fractions( + verdeelsleutel_df: DataFrame, node_index: Series, keys: int = 2 +) -> DataFrame: + df = pd.concat( + [ + verdeelsleutel_df[ + [f"locatie_benedenstrooms_{i}", f"fractie_{i}", "beschrijving"] + ].rename( + columns={ + f"locatie_benedenstrooms_{i}": "locatie_benedenstrooms", + f"fractie_{i}": "fraction", + "beschrijving": "control_state", + } + ) + for i in range(1, keys + 1) + ] + ) + + for code, node_id in zip(node_index.index, node_index): + df.loc[ + df.locatie_benedenstrooms.str.lower() == code.lower(), "node_id" + ] = node_id + + df.loc[:, "fraction"] = df["fraction"].round(3) + return df[["node_id", "fraction", "control_state"]] + + +def verdeelsleutel_to_control( + verdeelsleutel_df, + model, + offset_node_id=None, + code_waterbeheerder=None, + waterbeheerder=None, +): + keys = verdeelsleutel_df.locatie_bovenstrooms.unique() + frac_nodes = [] + if len(keys) != 1: + raise ValueError( + f"number of keys in verdeelsleutel != 1: {verdeelsleutel_df.locatie_bovenstrooms.unique()}" + ) + else: + listen_feature_id = ( + model.network.node.df[ + model.network.node.df["meta_code_waterbeheerder"] == keys[0] + ] + .iloc[0] + .meta_node_id + ) + + # get frac-nodes + for (loc1, loc2), df in verdeelsleutel_df.groupby( + ["locatie_benedenstrooms_1", "locatie_benedenstrooms_2"] + ): + frac_nodes += [ + model.network.node.df[ + (model.network.node.df["type"] == "FractionalFlow") + & ( + model.network.node.df["meta_code_waterbeheerder"].str.lower() + == i.lower() + ) + ] + .iloc[0] + .meta_node_id + for i in [loc1, loc2] + ] + + ctrl_node_id = add_control_node_to_network( + model.network, + frac_nodes, + offset=100, + offset_node_id=offset_node_id, + meta_code_waterbeheerder=code_waterbeheerder, + meta_waterbeheerder=waterbeheerder, + ) + + # add descrete control + condition_df = df[["ondergrens_waarde", "beschrijving"]].rename( + columns={"ondergrens_waarde": "greater_than", "beschrijving": "remarks"} + ) + condition_df["node_id"] = ctrl_node_id + condition_df["listen_feature_id"] = listen_feature_id + condition_df["variable"] = "flow_rate" + + logic_df = df[["beschrijving"]].rename(columns={"beschrijving": "control_state"}) + logic_df["truth_state"] = [ + "".join(["T"] * i + ["F"] * len(df))[0 : len(df)] for i in range(len(df)) + ] + logic_df["node_id"] = ctrl_node_id + model.discrete_control = ribasim.DiscreteControl( + logic=logic_df, condition=condition_df + ) + + return model diff --git a/src/ribasim_nl/tests/data/osm_lines.gpkg b/src/ribasim_nl/tests/data/osm_lines.gpkg new file mode 100644 index 0000000000000000000000000000000000000000..cd40f719adff13264d5ddd3930aee7128a809133 GIT binary patch literal 131072 zcmeHw31Aad{(sU!Tdsz?R0M`VNh4{Sq<1Mep$$o-O-q^zrDB{WlXPq{37IKvSwY%@ z*Ltn%dan10tIM*e>#FO0>V#Js_9fMBsg#aM+>slYKzp-`ycf9|jF!{B9@K)_$6LZR8k(U$tf z7Kyv`Ri()HemWdnhN(X1+%Z)|^^NLl)#oExM?E;IEq(2X8N)l$=MO7O*{8f+8W6q5 z5$LHNn?AKMFJt{UHca_^WY`yK^SM~cPr5*9VX9O3(?NOIRu@GxWSEunR5{Ehrx|lP zY!-{zfobIa$>Pvp3(bq_9A?aBZ!kNYSe?CpI1L6InAuci#T<1@A%MkZ#~REv<|-%V zFxeW+xu%764yO*&MCHPQG{zDweiGC4lR=}wR#8De!IBK-4$=%8CMcS%z+$=Nvxm6} znhvs93yJwjhQZiYg2oIQEw~S zllx-1d?YTK2#}c5yv&K&>)`*!ni`!%Qk&gr=1RWkmrzOu@@*w4Un>h0fGjXy`$P+5 za=(EBhNw;`UY#z6T1{frb&XtxM3JJNUCBMG>g)|ps8Z}sEY#*=*#K7Wu+^FzP1s^{ zlN1A;q=;#Cl3-p476`Z`XmPch&0?3wpv4^KMNpmCtIQ2ixS={?Nt$IOP;0fPj!DaE z$WtmP+Cz3SEB(-tx`=i*$kQ&lnp_6COJ?u%k?C2*#mWs)ndJU1hU{05b8e#!YYrTT z6plobkb-yYlktLUf8Io0_}Bn5WXh1~nU5Q?$F)vz z4M+3aU%O0*U@5}y3X@(J)5T!9F-EOrR9aSZ@t`#f$oJPWr;pL=73t|&rKQUAXT%G< zj|>J#Hr(ZM2mS2+U!kSDHMxs zpudwu(@v zc~C`LZcT32vD=buL|WF0(!<)4sFavRxQt0{Vx%qO$fJtZKJpYsbWa|ho>fqw>~4-5 zX3!S~ZAB|QUI3{>T7QF-dQ0?jn2N_s5^Q^zgjCw;co92zt_w&iZt#*+*s^w^e_;r7#er)% zj;3}ME7$U2X<4sTUNSVAumqRnq3$LwYHi;-iq7 zBV_udS@0M?1s-Fw;Gt5Df#jkQvKwXUHaK1|fvs+-jd;d=$?#|&jf2DPrFu(Y(WyfoiXT&y#em&0FUnZa15 zGc`J`bq<@esaeg*pw_8N_4*?9iWNzGN{nUYoDVk-YKCMjVUnafD0iz`r%%FOR<1X2 z>@Ws(Hmg0P57>b-UvDTaDlRmZ8;cF)sNrILejK<_L6p1p_od(~0Y<2c#bzO^} zTG>vz8dx$+!iby*wNh?1$Z2wzYRyiwqgf3fc__BsL%M=qR}j8xQM6iDYy=ca3?=$v z{#TL^zzyT*Fig>bswfXdaP0YoWu+yBWwBp*0z2a-;PaT5aI?WMm&bDW=}QxNyo8@2 zT_g;*DcYyjfhP2NeL^fz4jK%jm1ij`DdbtA2y&Bm0H7fmUiv81re!uTAG45z+0@_! zMe>ezF;+W#AG0RYFF;$)!G4A!eZFE+#*9ECOf+I%s!B2dV zGV$X@iiU4m7))}4T4*jaFno&xw1q@|6eAa3usG9U z66u|Ii+99aC~oVi?rBRc4Om$bC!U97DK}^5V?Pp#Q`A!|N6y!+$1hC9xRxOsJI%2PqFX{#UB5 zSHM5?LkJ)Q5CRARgaASSA%GA-2p|Ly0tf+w07BsSBj8q!nl)|KnEC1OOQA`&BN%RT z1(`r>?F=JvGU|y zdQ0QCrtE7Ub>wy`SK=cfUrN>23iyY92myouLI5Fv5I_hZ1P}rU0fYcT03m=7KnVO= z5XelOH9|6TfX4s77R91`AOsKs2myouLI5Fv5I_hZ1P}rU0fYcTK!Sj5{2yKazh9x+ zFX2J22myouLI5Fv5I_hZ1P}rU0fYcT03m=7KnR@32&j~)vy_t0|5@n!|B0+lBs)R? zA%GA-2p|Ly0tf+w073vEfDk|kAOr?LAnEu2Jqp#H0r-(KLI5Fv5I_hZ1P}rU0fYcT z03m=7KnNfN5CXqw1k}p(S(9d_WMoJ__;dGv*4XT3xJlV&hZ|0!-~T^Xs6PKiX9Wp| z5I_hZ1P}rU0fYcT03m=7KnNfN5CRARguoyXm@sVCB(PMyM^4$8x}y4ph?f+giV zRSvVsX~y7w0*l4$z%+9IWN~P)h2}+d4l~wRU(E%sTZF|DU=RW`o2sms zqi!igV6oY;26K(M%85Blwgz*qXQ}Vd#cB# z^RSK^6s#1@kYQF1+mXQ z{-d?celds;#w;`F#o|222 zu3i0IiOyua;M$)z5lSB$V1^7!nVR^xA$wdSA6HN`zx|cNgb0=*{H`$RbunEGmK$T# zT1KU1H5U)MoC5Ow%POaj(d!lI=~<*jZ2KnB_p*ysn|N`HgOp6 zf+Q5Vb_ng3T1lhbwxkjIOYuUOzz;=~X6poAf?_Cy&R_E z@sb4F9ws4`b~@fTRGSx>8f&60kJglymep8rSh%F=#>$=4DZTgPl=Li(M!BIQp0|X2 z2}ElDJPBS>Lpw}{U?fAhxT2KEqoX`f=~G^c3`aep)~oZ7j5|z)SPBLee1j`wU8B+Y z35IpKVRYbw_6y0YI2(Lasqid9%qiVBB!<@$Gcpk)6l^V zjaI9Z*5o=&T7&BXl8PI=Bo(%-UFcsJ!d!9ST8^WsUB$|^d{|mmt>&;A7PJs62m(30 zJazCvqlPa89R}mr3~nsjld9y~-d=6oIArYrZ~HR0l>Vk7XkVl6B6f`Stad!VUG+I)LRFGW*)6f$#^+nsjIr~tsROEGdz#!Knz({hLH zNnMvx1P(99#{0tG7`PLH_-S*+EqN-;a-wBsY(u^TAp-3T zKM~;zLp=;t6F(ObAN6r2$InM31X>`D{cMw?*iIc3wnsVolcxO(8~;f~!;TTlrb&ac z)985T*z7bRjsfj7HnRG;rp%()#)LRBY-52Wb~BnAq|8UF-NLwpoM2 z_9zWCLEK+hjhZ0au|Vk@7cKJW3k3QC(eFb}wBY=FUmz5UVZTRTAowq1l6mE$oI>wG zUm&?Ab@T#tb1FD4Kh*?TGErLYYN=PG;wu#j{a<#hSzi#r|9k$l`QQIG zfyZ26w;N;}8eZ-n<(|eyCTv}EZ!N<)TzkSc@ zY}4M#hMBJwMsU@2x!A(aY?F`?Ap;#H#?qn^gTBZpzH|^>VQLi_Ze`gJQ&CW`I!LzV z2fbd(O_6@Gg=`~fPk?BnU{03Kr~L&C>khMdM!lgZ&sbJgp5Mv_{3Tr^6aCj~>Cu2? z^yHtomZ9QIWgyF_*#5z3H{?a|j`3fQnsZtNpKJx4EF%pfnBF)3 zS$q*_KIS0=X!ue8n&Ed4;HsDBtguG#>ldcBEx$C|bit0i%Pztr_{n+NLp{IEHa)nq z=KFUlBKWfUan=hj%r*%L3kiyvGzgkB4234kqiWQ{pAAgU98l$X^iQaA9EaDyzn{O5 z&q@?dDCB|${8!EhFY-n3MVhst+n~$}8sQ816bLIY3LciMcZ|lG2p;ar{Br}S&hh-g zMc36v@LRV}DqRBfV#j@p=F~;-v0FBVih;)NTTu3~0}AzdJ>hpR$u_;bsp~)c8Y6h= zb+_7I0s6i1w`->@i{KNAPszU$=$SWN@k9XVD~$Qw6M?=%dGU@JO;E@ib|}mjXPfHF zSB3uo^q;!_yX`43mCOI|)}~F%Blus#K4UG=C5?{C8=Ik0d3@Ln^hMdGJ)6dDD?0;B zOW*S01fahgb>&@?OwSN!%_b>aV00(-?X8psP!T+~omgy%0T~_kr z|8N(`_s5wxKMc0s9dhJvIxB+vAN{s%7SOA1Gc5jqh~Py}_pN*8{A|;`HyaLZfl94; z*VA+E1^Uc_?bD}_5&YZXCygx!`V;jv3WYao>k%-;`~-J+fuR#Gs@G6Bq=K-g%?Dul;u){?GJjpMK`aHf2p; zcS-i2`tZuVrz{wGX13|lD;C=?TiJ&fb(lXodwI6$z82PGC;1#1mGBz8K*FeDwV-I98`TS@x7$=wa0`}2>jUvr#w zpP=RmeCw6q1cXrK-EE$IcIcx%{Hb8ply9M%u{`%+PBEwR&RoZ%*T!@|6#@thg2$>6 z&#S(5M)2>_{1wrMUas1<=~%W*N`=;IeGf6H_Z| zYDy#cS--p5Hy7ydr?1XzfPT$?|Mz404^Sn}ZuGvOHb(Gr;-(wM1D$ur@CVP=NAShv zoA>NU(pv7?xTE{WQzH0-Ykjw#1y#@)6JAMG&5Ypnc;3YAP~|*TzjNHE=@IMqpA)6*czw8ck)5`Qw5&T)pKi@sLHrw>= zne;mC@Cbg&hcjOv{O~Ils?1maamJZIFa6hMTN%)gJ$#0G63}~o zr+Lo8WSay<3JUBf(wCMS3QLO1#FwF|B8C3IhWeFUU*Oofb;r42B#caA1tY;NUND5Z z?uW)(PTgDhJucLFxz}8K=~+UzZZZ@MfkFGi<~K{hFb_<4xAQyA_xRY4#!vVQ81iT5 z&U?pj^7r_4zjnjXH?vg?al^UXFmF$0EM;p}YtF@>K-i zS$>}T6!1T#^fxzH--NbxdiUE0A-;dnFKzKW2W{s!H{W%77D_s=SQ5s;`RvsOxpJU)k8s$4^Xu$t|T;28b=3@;e6&O2+3=3J2P+Prgb07G6r{yxQ;t_a>Zb4lLqV92K`zw@2} zeGT{cVefqihWzCh_J5AHNAPpcHkQ;R8F1_~jJ&jUb_9RvvW%Oq21DMybL`FTj0k>} zEo0-VP_{_`UI4tqSgbECEh;T47GH+OkU@8odz#@nsb>j1C-&rW=l>}cn-%cSrI-T$ z#edf>nS0o^8Du9cXk=iW0ux(%6L-jlSeA1!)n}(=&7G@k;+I&&*10m|%65`=lQMEb z!omufXD+v#LI)wWH`Yu^&zdz$`Dk=a7)`Pr!El=^$OI&>;}YUhOMKK=E~fTU9<{jW zQMv}y)ab0U*&%SPS-QRrQ*+Cv)L4zpZiW@4HoHX!k+l2$u=+yHudo0bB#@KbdLYri zgZt7BY7`yX!+!A{R^LRw3RQ$!yBNw%#J!^KA}2+AgW-V0znvj`vQ!vY9Ri7oVVDp} zdRl@6E4m26RJgev7{PE?MKDB$2{tGR6l@Q>$qFu5MJPoPdq;iNd$;+TLszah7`frV3j7Ud}?=d%g03N z#o(~YK>mtVtzOX$-XSz-FoDxUG3^W)*J)JX3Ql-2By6r&MY-cN zpEKC*(i%sXck+|oxJyfz@<_B42m;bPQZT#VhOd5ZF?vxmU=qCEL>~_YVo22*fHgoc zBN1odbs_`VA9S~It18>$n&q4-WM&o1c}11E)+t6vxS^CXA{ih;l;2N;<0i~4S%*(| z62#m=m_?D$f>~8`kSz?Xau*}xF=FEg$^G5IKmeA`iTtoMw}K&PPdFZhU>mX=yW9OB zLp&tmXZdBN6?D8%#oavd{E3cUNe+d;WZa%aK8c-jxK)6RqP$FNFdR#lh(pikx~*O0 z>SzT_c$HT$U32Kxyq) zsnAgFrA08B&A5tr99FmHSqX{7NF3uj=8J<=Pcbf04xa8H66sZOV0eF4rcpL-SyBJi z#PF;vK1LRvk@1IviQz-CtOn!t1)m-*<3NLl)%EIyA+9=A*$ciaH@_}w!87MZ*)GW=TNl`J2= zC0+^fG!ZZNJk6|@33zrqK`+I$N^9+CfVe`Uv(8XNIFCd%h3FQULp)kO8n28dR?7lN zsv-|Gm2sHGI!(e6FYEqbhpec_S{1TF5I0dUzf2InOpaDY=HO#G#26TsfU1+*8!9@r z5Wb3*aFFf@2I-KWAlSG1k1h=09 z4`!>(C|l#Pd!c_N#>z9d$4giT)dtJ5p|yrZx`6<6j}tkWI42)6Br_FC7BeXeFKLKc zU=1)C=9is|X%HT6kvG4IQFH@?3yDMvEV=hc8*!l-P3Wx(j+}^MQ2rB1h0sHRIvg|w z9eL3|)EcBE6v1#^Q!pG!6wn`_!TMdT(7wbo7Hol--2Ql2Fug?k6uL19okJ=h?fOD* z(#3Bm6XoIY^}|B?b}3(yHrE#>B<+~AdEmMor&~=HG0tSoFvsNewXK#gLGM_kcrn6p zYZ96|kpWgf1mk&+Hrb-5pXicw<%M!8dUMtm;;b#fh1-rGItYC*(Lve~24NCG6HC3w z4ldE&BDX&ZdUv4mMEe2;&{n&&3oPnOjD<(R8?R`&?yu;XC<62;v+{Qi8aaBhfKhA?~>NQZOaAXVV^RV%1 zW>v@8z`?nyVY5+;i+6&rh;b*PEuqA%f;!I~lt{`s&;%ik*XN=EKrv1rrT&m$8*s_qGT(fa>i#rl8FkR4>Z zkA=TBM?2+Xx$%F7vQ?2edepZg>5Pxl^M{|Gx)L1FZ%7eXKfGrN>>cVow!K4&5(ejhP+*`&bm z*Ko&e?*jvV>MP~%PmbWDZ@pqu3NS958M#9-DT2TFqk7C<@TcB;{GH1uMDYDr@0k80 z&|@$9P_Y#@p$QRRGjhV-y<=f7&YgGh{A*@h`*ID?Zw6k>^8Eb!POsrl6^w~?AN|U+4nx|p(^Qg>~CEcGX!qdNMH~= za&P~~fyEG@c*ceK8NgVQrn;vd=mOV2)va*qL&pBKmN)Yw`1{pgO`Hw%;mW8Z+?JFBM- ztfHI#iDL%jx{%Sw(JJItAg2?pLfG+k&z8%=H)O?kzP(hiYv;4DV~(#LxTARm2EpT- zYv(`nEfnXqt}m9gtjac--hcJbHL&N@lzr<>sY$ld30f*Dk7=o>d90Wz^2$yqKf<9M@)M4PQ&mJY2#kVx>od9zgjYoHC(=E`ieW3c za5e+439cLRzZ}h>fP_H^Q1$32whID$yHNY_MDVYiP27Gf&?8$<+I%aV3-i(iwNJbX zwDF4@Hn#$uS@hA>eL&Co`-=4|VQ=^vV#2+PVK4jFQ=fU0fpcn7Cfsnr9YCLBnfd#> z;ar<*8fxc$3iR_&w@j-6dg0iEo!fs8HRaa7?tS(22!1bn-F2ZW`yVPHScZ}7pK_LA zG!B(z^oDwhIh#0fTDK#!i8JRtsU8PM{0J)h^rn(4tKs+nL3O-MjDR==MuA~@#$PWF zL%^j=X6Jkd0iHUvsm=*>&*pW1SPthAOn-CRnpU7wrhYf_E}+-He#z#gK<`-k_Qn^1 z{$%F9Kb;5k(_`Psp8+;f6aMBu=K_7xIb{cXfqvlBvnO2y^xfxed1_-4n-X+x;5s#& z&J9D>so}=|=}M0xvwZZrk$=nhA>BFrA3&nt5F&6vV^1@btBdWw(q7}4TQYrb|Emw5 zXjrr1gOL$@{?~s${~6YEyYf&ed$d7?cG z^jYsNrZ$X#lLlh}&Ebrma5{`7?>W1Y2LFFvu=>5JX%XCeQOaw}fIe_;&6tsJ;7sbh z6+7nv{oprueb}5D!OwjCfdC%pWlo9-m)?0^v4z&J@zgA}g&8ps=!THyZ zIqQWpe(b~VY5nTcJwOkevFEohe&2_GGxn<5TYz4>KE=HGyFR>j{ok4w0zLE3Uu}Ej zKYjQmHH~97!$E}?<^Ol?&HMZCzih24I)gj-Q1$M(MPC9CZ{b_DKsP@5?q8;U-iKR! z&(6LF&KX%}IJM$2IPj)uTQ%bZdb`Ruefg(-__Dc;}w z{JrV_`*1PPk)d8H2zR&Dv_ zIXGx>PurZ4nLsb7KIN+QK;OOSmbJfmsSiKnlfu50 z`+mjNK73`k^`uomzs$b6dh`o@xanfYlhc8I!Z1pC7tr&rzvY}OU{v@@>gcMgfX-~H zyE7N)aYpBXSwQEFckh1)4h#|uFXO^>7uNvYG^24PXNV6Q=0p@gzx3cMU#-~QhmZZ? zk{92A!K3|?O*cn?eiHjr&UT=c_k4P2$&Nn!&m-@+b|cW2oq`pNeXS2)J~sRH8-T9A zW#rs{13neXH#WO~9(j`W-yOUA@Z3+zCN2Q_*6r84_z%GM!ac9J#&GoJ;3MRoKCu9F zloT3_g=NLX#p26QwbjstgHg?dp5-Fnq<53ZVr?!Q(XD z1F5s&l(qwl_w|m2nn)gjsF)%_F-1eDnBF-(O`KZj6TH5c_pk-E2-Ud!d@!L}=hebZ z=ExZ?8n))n^3f6ez(YHnDyXkR3-5J(1Cu#B4|EQn473oj5Rs^+LP1T1L#QSwLNK4R z3^ettozG#d_A@O{_2ELr_~7aL@9%<&N~j=tO>y%%0;9n2yFEL9_rTMA_=_K3KKp72 zuw^tu{`9fw(O5vi*4s_aZi3jhb_4ucR|N`YwtW{OJIk{mSR_r9lb4a@;czc5z>{C zrs@Vwofs-cQX&Kp0tf+w073vEfDk|kAOsKs2myouLf`~P;FRGod7(_0Ll|K0A{84B zlMjik3E@&^4~NNv5kE0^z1V{EL#m|U_8*a+dXq3H;EYad86JSmtrdPq`i%v73fqwN`|NuRo6Rz`0gTwL$-!By+gKQ0ek3ktJhUXozj!z5g0*-pa^mL%H|47a(0 zOhED~;N-AbI6TyYjY5r?7C9k6wYkO&IM>-RwIo(Gw$N;`*|Em@YEBD0{y|?DB!P=O zX_mnn%uXypJZ!#<&ch7YQmffv#^BClGMvjRoWCtt3%pS`jU-8pb{=N7SNDvYlN=L@ zW&ogL!sMr-5HPXX8_W*p{{bd*j}DXWvvSg>T4rVR5HamWrz|Dl@i&sj%tqoYH;%)G z6LLS0MSwEx7+mn2ujZys)$uYEHI-PfMUJ{!Or1O-b<7~3{LaVfYO3?qUdp46sy%0R z`cxYf1?uowY!5*}C5w(ckFkJ4CS!)(&+Pe3ilSjN=VNyB(x{x6$zF}+@?;bMTLV|K zV08|x!RfLw=0J$;lK5-2u|jlY$Uv#f6$Q}6laCgU-ojZtPUj6D3{Hhdi&NoH;skXt z4-|(VS04{0S_yU}lv@Yf+*@B`sxouUMBTvFc)F>k(cBQzDQAj05UrM?mr1p#3l!eV9hr|kUrn|Xrbpx*CQ&g3E5Fmo^v z8IBer!~Y3HM`q!_Tr)ibiQi6-2`c8W3QR_dNJ2IF}|n`ZY9zt3ZT! ze{r=y_enF-vn&>6cOl;wO5R4gLIm6k&mPuun$WKEo#O!-+gL>ETpF%Ir-NdTS<*w+ zMbqLKwB4E0)3d6ol-;uqCmhE*fM}f8$%7J%<29S zjSV)t1><9a;f@XqP;@6eiB9fG(Ovv|mv;Wtw5%m_l?wjrHM7#seM=|W*&t85_-?!S z-JNk6WDeQg9Vew{&7G_4&Ec~n^OliQ5|EU6Vv_znKj6{1gZ}ma&3E{t4x%7&H?a?? z^N?POrdTRSCk~f%Nd|2?$)L{%qcJy$HQH@U8qHE6beKc{9hR85R$HH)#$~*T&vy(s zhFsZB(r!{lPDseN%rloJ0;CQ?YPs=$ma0Rcil`2$_NzWsy{~#(^@eJPYOCs5)#Iwa ztG1}_Q{APyMRmRE53oYuLRGJ74X~phLI5Fv5I_hZ1P}rU0fYcT03m=7KnNfN5CT7q zKgnt(E z&s_eg;h%H(=M3)I-M~Fp!h;+CD@Wxi;2-)S1P}rU0fYcT03m=7KnNfN5CT#JF05A$ zQ~Z85IAz70S6bfq=0(f9H>Fs&cHUy$_IvI?aPIf2<&DB#%kIaYv~KO%Xx;YW`%!1* z49kwq|AH_tSzmbJdHo~Kdx_Dy&Gf8w z+tsUM?zxsX&rw_UxZbmFz3&F=Hte;Sd$DErt_v-@-(LiA%(8AfUx=r~vU{!HvU}e( z)@|K)TetoBPci;dNYiL}Yf-0l+er#Y`{bB=t!0qCwVIb?Lz&qW#E!7rtUjlKL zS#~{Tw{G1%!Mb(t9Wi$YAOD*--e%qU)HsOe@|gSSmN!1|TXv0EW8F4xxpmu&mYDle z%g&CsEjzCmX5ISWO6%6wa$@ewEIY@STXxz(o-Ny~TOW!o<5f0Ub}gN4+4T%--Io2l zb=%B`WBki4JKxt?-l+JGb?Yrp0jAHz+?yeeeGq02xIJUtHfvwZ{SnI!rar32KaK_+ z$M8%&ExCI%6nY{AerX7BwOUa%Od1m9wedjB!3#edEF!TNS1mD3}J*G&D6h&9#~ZBP;n3tH>|| zTNdZ53-b$$^7VQ3VQMw(-c>IciD8u#>=k&A-i0Kv{zFKuIa zBzVS-Hg-Y1qwcgSM?lT_C;7Ff3i;P39gCl4fYo&qI zI&)2pt-hhoR^6;#NHPrR#|&jf2DPrFu(Y(WyfoiXT&y#em&0FUnZa15t1;UxPAlvZ zbvCQvT%Itg))`i;SfS%KLz^LP3mgGWcTnzDwN9@y*)28ZD6fa~fe$$5>kXwv#f8Rl zW3i#Uyr{4c0&}UG>l-X;9e1x8IKaNt)6I?sTb;dGE##`!?6lSaV_l1%g6*YP151WU zI7){IwNh@iB#!bjJr_s4$zg&pW=FHS2GC^NJtP+Na>%xa2|pHu6M`sOtt&P{-bxH5 z`eOc9GDx8%>6Mk~0fL0|g0yeo1oI2aN=pjMV!!gEO3;{?V1t|Rlb9FGGZ@AQwqGXo z`Q`A_mzL`qs!W1P+F_e;7pK0&yc8!!y@>ELBt{Yp3+4;l#l?EPKDikr##53k9vUpQ zm5->Xq;QZCm2&n~)zDl;grR&<1g$f!(3zIm!2DxkVY$n+Y8^-D>KxUeamZ70Lyd(K z#K3Z!ARtf0LPFF7gluduS5Q zfgmJiFy;j)P;}7i<-^0yY{)Yh^Xec?a%nAGShuXXSf5{7tSihn>WT~VOLe9BM$TH| zWekc~Ik;37a5V{E`9Sp(3J1?FS}>RUGoRr~7J<$66Rb-=UtU1KJxFuzGCRiRw#^sq z44c~tEKy^@=61n*RNvTK((ey3^IM{I&0Nj~nfU>1E**qJm%I$r-n<}!SPV1^o&``< zlvWl*-{U@<2bUGj2i^q_*tOpZBv+qQ#QbAU0*8lW++ixj?U7%QqynuhkTM8?IJrnS z7lv?$gLGG5K@_H_#ECva7|1IXVuF-M2*L|hs@E4mGa&a90>P0;u}aPBCwvRMT=}ak zkh${Aka20F!M8yLu@1()!&J$))(f~(^*1V}&YjkyN^I199>ULEFd(+&mTFT? zZM&bPs)GT7qHANPukq1K39y>lY8%!@cFk8WvDg}1u_{}=Ah8jzEC9BsaPi=k1p_8C zMzvj`R9&xt{r%S;rw$KF1|fhDKnNfN5CRARgaASSA%GA-2p|Ly0tkUP0)~`~tXT@h ze5Hav?oV=XsZnn%%rhABjD=1^QH8+(Q!n`?2L19B2yEnnj2Kjq;$q`+ZvB5+#(qWS zt}%y3zdP#1k&gp`eh2}C073vEfDk|kAOwCr2=vx!)3fHyQ=Vst9~})})(>|{bo~CM z83{)!^G8Yd4~yl(ssi|=2PZNoyShimryD;@y8nUGaGJM^^0-zJe)#SlyD&({!UaC? z@i7p>xSMU9@cCangj&4BCl}UCcsa&gO-@r@P9QJGjJ??}9=%Gv%V2nc#Y|pT4aM-OL2Hkwq_` K`v3iArvC^1J$lRl literal 0 HcmV?d00001 diff --git a/src/ribasim_nl/tests/test_network.py b/src/ribasim_nl/tests/test_network.py index d84a76a..3288c4a 100644 --- a/src/ribasim_nl/tests/test_network.py +++ b/src/ribasim_nl/tests/test_network.py @@ -1,9 +1,23 @@ +# %% +from pathlib import Path + import geopandas as gpd +import pytest from ribasim_nl import Network from shapely.geometry import LineString -def test_network(tmp_path): +@pytest.fixture +def osm_lines_gpkg(): + return Path(__file__).parent.joinpath("data", "osm_lines.gpkg") + + +@pytest.fixture +def edge_columns(): + return ["node_from", "node_to", "name", "id", "length", "geometry"] + + +def test_network(tmp_path, edge_columns): lines_gdf = gpd.GeoDataFrame( geometry=gpd.GeoSeries( [ @@ -15,15 +29,15 @@ def test_network(tmp_path): ) network = Network(lines_gdf) - assert len(network.nodes) == len(network.graph.nodes) == 4 - assert len(network.links) == len(network.graph.edges) == 3 - assert all(i in ["geometry", "node_from", "node_to"] for i in network.links.columns) + assert len(network.graph.nodes) == 4 + assert len(network.graph.edges) == 3 + assert all(i in edge_columns for i in network.links.columns) output_file = tmp_path / "network.gpkg" network.to_file(output_file) assert output_file.exists() -def test_gap_in_network(): +def test_gap_in_network(edge_columns): lines_gdf = gpd.GeoDataFrame( geometry=gpd.GeoSeries( [ @@ -36,17 +50,17 @@ def test_gap_in_network(): network = Network(lines_gdf) # we'll find 5 nodes now, as there is a gap - assert len(network.nodes) == len(network.graph.nodes) == 5 + assert len(network.graph.nodes) == 5 # throw network away and regenerate it with tolerance network.reset() network.tolerance = 1 # we'll find 4 nodes now, as the gap is repaired - assert len(network.nodes) == len(network.graph.nodes) == 4 - assert len(network.links) == len(network.graph.edges) == 3 + assert len(network.graph.nodes) == 4 + assert len(network.graph.edges) == 3 - assert all(i in ["geometry", "node_from", "node_to"] for i in network.links.columns) + assert all(i in edge_columns for i in network.links.columns) def test_link_within_tolerance(): @@ -65,14 +79,14 @@ def test_link_within_tolerance(): # not snapping within tolerance should produce all links and nodes network = Network(lines_gdf) - assert len(network.links) == len(network.graph.edges) == 5 - assert len(network.nodes) == len(network.graph.nodes) == 6 + assert len(network.graph.edges) == 5 + assert len(network.graph.nodes) == 6 network.reset() # tolerance >1m should remove link network.tolerance = 1.1 - assert len(network.links) == len(network.graph.edges) == 4 - assert len(network.nodes) == len(network.graph.nodes) == 5 + assert len(network.graph.edges) == 4 + assert len(network.graph.nodes) == 5 def test_split_intersecting_links(): @@ -88,5 +102,15 @@ def test_split_intersecting_links(): network = Network(lines_gdf) - assert len(network.links) == len(network.graph.edges) == 3 - assert len(network.nodes) == len(network.graph.nodes) == 4 + assert len(network.graph.edges) == 3 + assert len(network.graph.nodes) == 4 + + +def test_osm_lines(osm_lines_gpkg): + network = Network.from_lines_gpkg(osm_lines_gpkg) + + assert len(network.graph.edges) == 42 + assert len(network.graph.nodes) == 35 + + +# %% diff --git a/src/ribasim_nl/tests/test_tables.py b/src/ribasim_nl/tests/test_tables.py new file mode 100644 index 0000000..93bc783 --- /dev/null +++ b/src/ribasim_nl/tests/test_tables.py @@ -0,0 +1,20 @@ +import pandas as pd +from ribasim_nl.tables import average_width, cumulative_area, manning_profile + + +def test_interpolation_simple(): + df_left = pd.DataFrame({"level": [1, 2, 3, 6], "width": [10, 20, 30, 60]}) + df_right = pd.DataFrame({"level": [2, 4], "width": [20, 40]}) + + # combine two width-tables + df = average_width(df_left, df_right) + assert df.width.to_list() == [10.0, 20.0, 30.0, 40.0, 60.0] + + # compute cumulative areas + area = cumulative_area(df) + assert area.to_list() == [0.0, 15.0, 40.0, 75.0, 175.0] + + # calculate manning_profile + profile_width, profile_slope = manning_profile(df) + assert profile_width == 10.0 + assert profile_slope == 5.0