Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Unable to train Any Pixor Model Nor Run the Provided Model #154

Open
xavierallem opened this issue Dec 6, 2024 · 1 comment
Open

Unable to train Any Pixor Model Nor Run the Provided Model #154

xavierallem opened this issue Dec 6, 2024 · 1 comment

Comments

@xavierallem
Copy link

xavierallem commented Dec 6, 2024

Hello,
Thank you for the great work you guys have done. I followed the step that showed me how to train. However, I get this error when I try to train any pixor model. I get these errors. I haven't changed any parameters.

Pixor_intermediate_fusion

Not using distributed mode
-----------------Dataset Building------------------
---------------Creating Model------------------
optimizer method is: <class 'torch.optim.adam.Adam'>
not supported lr scheduler

Pixor_Late_Fusion

 File "/home/xavierallem/Opencood_testing/OpenCOOD/opencood/data_utils/datasets/__init__.py", line 38, in build_dataset
    train=train
  File "/home/xavierallem/Opencood_testing/OpenCOOD/opencood/data_utils/datasets/late_fusion_dataset.py", line 34, in __init__
    super(LateFusionDataset, self).__init__(params, visualize, train)
  File "/home/xavierallem/OpenCOOD/opencood/data_utils/datasets/basedataset.py", line 67, in __init__
    self.data_augmentor = DataAugmentor(params['data_augment'],
KeyError: 'data_augment'

Pixor_Early_fusion

Not using distributed mode
-----------------Dataset Building------------------
---------------Creating Model------------------
optimizer method is: <class 'torch.optim.adam.Adam'>
not supported lr scheduler

Steps performed

  • Export the Config file with changed dataset path (Any type pf fusion)
python opencood/tools/train.py --hypes_yaml ${CONFIG_FILE}

Model Inference

Also while running the Model from here -> Link

Dataset Building
1980 samples found.
Creating Model
Loading Model from checkpoint
resuming by loading epoch 10000
0it [00:00, ?it/s]/home/xavierallem/miniconda3/envs/opencood/lib/python3.7/site-packages/torch/functional.py:504: UserWarning: torch.meshgrid: in an upcoming release, it will be required to pass the indexing argument. (Triggered internally at ../aten/src/ATen/native/TensorShape.cpp:3190.)
  return _VF.meshgrid(tensors, **kwargs)  # type: ignore[attr-defined]
/home/xavierallem/miniconda3/envs/opencood/lib/python3.7/site-packages/shapely/set_operations.py:133: RuntimeWarning: invalid value encountered in intersection
  return lib.intersection(a, b, **kwargs)
0it [00:12, ?it/s]
Traceback (most recent call last):
  File "opencood/tools/inference.py", line 208, in <module>
    main()
  File "opencood/tools/inference.py", line 175, in main
    mode='constant'
  File "/home/xavierallem/Opencood_testing/OpenCOOD/opencood/visualization/vis_utils.py", line 508, in visualize_inference_sample_dataloader
    pred_o3d_box = bbx2linset(pred_box_tensor, color=(1, 0, 0))
  File "/home/xavierallem/Opencood_testing/OpenCOOD/opencood/visualization/vis_utils.py", line 64, in bbx2linset
    line_set.points = o3d.utility.Vector3dVector(bbx)
RuntimeError: Unable to cast Python instance to C++ type (compile in debug mode for details)

Steps performed

  • Export the model dir with changed dataset path (Any type pf fusion)
  • Export Early Stratergy
python opencood/tools/inference.py --model_dir ${CHECKPOINT_FOLDER} --fusion_method ${FUSION_STRATEGY} --show_sequence

Can you Please help me through this? Is there any additional step That I need to follow?

@xavierallem xavierallem changed the title Unable to train Any Pixor Model Unable to train Any Pixor Model Nor Run the Provided Model Dec 6, 2024
@wkyd
Copy link

wkyd commented Dec 21, 2024

可以请教一下您运行这个项目的步骤吗,请问您是在windows上还是Ubuntu上

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants