Skip to content

Latest commit

 

History

History
40 lines (30 loc) · 1.15 KB

README.md

File metadata and controls

40 lines (30 loc) · 1.15 KB

machine_learning

  1. SimpleLinearRegression
    Simple linear regression using Least Squares Criterion
    y = mx + c
    Finding m and c

  2. SimpleLinearRegressionGD
    Simple linear regression using Gradient Descent
    y = mx + c
    Start with random slople(m) and constant(c)
    Minimise the error through epocs
    Finding m and c

  3. MultipleLinearRegression
    Multiple linear regression
    y = b0 + b1X1 + b2X2 +....+bn*Xn
    Finding b0, b1 .... bn

  4. MultipleLinearRegressionGD
    Multiple linear regression using Gradient Descent
    y = b0 + b1X1 + b2X2 +....+bn*Xn
    Start with random sloples(b1, b2.... bn) and constant(b0)
    Minimise the error through epocs
    Finding b0, b1 .... bn

  5. PolynomialRegression
    Polynomial regression
    y = b0 +(b1 * x^1)+(b2 * x^2)+...+(bn * x^n) $$
    Finding b0, b1 .... bn

  6. Clustering
    Given a datset of n dimension and no of clusters K to be formed
    Form K clusters and allocate dataset samples to K clusters

  7. Neural Network
    Classification using Neural Network