-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmemmap_dataloader.py
584 lines (487 loc) · 28.7 KB
/
memmap_dataloader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
import bisect
import dill
import datetime
import math
import numpy as np
import torch
import os
from collections import defaultdict
from tqdm import tqdm
class MemmapHDF5Dict():
"""
Allows for associative access to a memmap/pytables file using the special getitem function
"""
def __init__(self, filepath, config, file_format=None):
self.filepath = filepath
self.config = config
self.has_index_dim = (self.config["file"]["daterange"] is not None)
self.file_format = file_format
self.open()
pass
def __enter__(self):
self.open()
def __exit__(self):
self.close()
def open(self):
if getattr(self, "fo", None) is not None:
self.fo.close()
if self.filepath in ["h5"] or self.file_format == "hdf5":
import pytables
self._fo = pytables.open_file(self.filepath, mode="r")
self.fo = self.fo.getNode("/group0", "table0")
self.file_format = "hdf5"
else:
self.fo = np.memmap(self.filepath,
dtype='float32',
mode='r',
shape=self.config["file"]["dims"],
offset=0)
self.file_format = "memmap"
def close(self):
if self.fo is not None:
self.fo.flush()
if self.file_format in "hdf5":
self._fo.close()
else:
del self.fo
def __getitem__(self, index):
# print("GETITEM: ", index)
indices, categories = index
# translate category names into ranges
cat_rgs = {}
for category in categories:
splt = category.split(":")
if len(splt) == 2:
if splt[1][-3:] == "hPa":
pressure2index = {v: k for k, v in self.config["vbls"][splt[0]]["index2pressure"].items()}
idx = pressure2index[int(splt[1][:-3])]
else:
idx = int(splt[1])
offset = self.config["vbls"][splt[0]]["offset"]
n_levels = 1 if self.config["vbls"][splt[0]]["levels"] is None else len(self.config["vbls"][splt[0]][
"levels"])
assert n_levels > idx, "invalid level index!"
cat_rgs[category] = (offset + idx, offset + idx, self.config["vbls"][splt[0]]["type"] == "temp")
else:
offset = self.config["vbls"][category]["offset"]
n_levels = 1 if self.config["vbls"][category]["levels"] is None else len(
self.config["vbls"][category]["levels"])
cat_rgs[category] = (offset, offset + n_levels - 1, self.config["vbls"][splt[0]][
"type"] == "temp") # CHECK: Indices are inclusive right?
if isinstance(indices, slice):
# special instance - we can return a view!
results_dict = {cat_name: self.fo[indices, slice(rg[0], rg[1] + 1, 1)]
if rg[2] else self.fo[slice(rg[0], rg[1] + 1, 1)] for cat_name, rg in cat_rgs.items()}
else:
results_dict = {}
for cat_name, rg in cat_rgs.items():
if indices is not None:
results_dict[cat_name] = self.fo[np.ix_(indices, np.arange(rg[0], rg[1] + 1))]
else:
if rg[2]:
# print("BRANCH TMP NON INDICES:", rg)
results_dict[cat_name] = self.fo[slice(None, None), slice(rg[0], rg[1] + 1)]
# self.fo[np.arange(self.fo.shape[0]), np.arange(rg[0], rg[1] + 1)]
else:
results_dict[cat_name] = self.fo[slice(rg[0], rg[1] + 1)]
# np.arange(rg[0], rg[1] + 1)
return results_dict
class DatafileJoin():
def __init__(self, datapath):
self.datapaths = datapath if isinstance(datapath, (list, tuple)) else [datapath]
self.dataset_config = {"variables": {}, "memmap": {}}
for datapath in self.datapaths:
dc = dill.load(open(datapath, "rb"))
datapath = os.path.dirname(datapath)
for k, v in dc["variables"].items():
dc["variables"][k]["mmap_name"] = os.path.join(datapath, dc["variables"][k]["mmap_name"])
kys = list(dc["memmap"].keys())
for k in kys:
dc["memmap"][os.path.join(datapath, k)] = dc["memmap"][k]
del dc["memmap"][k]
self.dataset_config["variables"].update(dc["variables"])
self.dataset_config["memmap"].update(dc["memmap"])
# Load datasets
self.datasets = {}
for filepath, config in self.dataset_config["memmap"].items():
file_config = {"file": self.dataset_config["memmap"][filepath],
"vbls": {k: v for k, v in self.dataset_config["variables"].items() if
v["mmap_name"] == filepath}}
self.datasets[filepath] = MemmapHDF5Dict(filepath=filepath,
config=file_config) # Need switch for H5PY if necessary
pass
def _get_file_indices(self, ts_indices, cat_name, config=None):
cat_name_base = cat_name.split(":")[0]
if cat_name_base not in self.dataset_config["variables"]:
print("Cannot retrieve variable {} as it cannot be found in any of the dataset(s) at {}!".format(cat_name,
self.datapaths))
return None, False
file_filename = self.dataset_config["variables"][cat_name_base]["mmap_name"]
file_coords = None
if ts_indices is not None:
if isinstance(ts_indices, tuple):
ts_min = ts_indices[0]
ts_max = ts_indices[1]
tfreq = ts_indices[2] if len(ts_indices) > 2 else None
else:
ts_min = min(ts_indices)
ts_max = max(ts_indices)
tfreq = None
ts_ix = ts_indices
if self.dataset_config["memmap"][file_filename]["daterange"] is not None:
if ts_min < self.dataset_config["memmap"][file_filename]["daterange"][0] \
or ts_max > self.dataset_config["memmap"][file_filename]["daterange"][1]:
return None, False
# deal with fractional strides and coordinate mismatches
tfreq_s_ds = self.dataset_config["memmap"][file_filename]["tfreq_s"]
tfreq_s = tfreq_s_ds if tfreq is None else tfreq
is_tuple = isinstance(ts_indices, tuple)
if is_tuple:
if not (tfreq_s//tfreq_s_ds and not tfreq_s%tfreq_s_ds):
ts_ix = np.linspace(ts_indices[0], ts_indices[1],
int((ts_indices[1] - ts_indices[0]) // tfreq_s))
file_coords = (ts_ix-self.dataset_config["memmap"][file_filename]["daterange"][0]) / tfreq_s_ds
# will be postprocessed by the second if branch below!
else:
ts_start = (ts_indices[0] -
self.dataset_config["memmap"][file_filename]["daterange"][0]) // tfreq_s
ts_stop = (ts_indices[1] -
self.dataset_config["memmap"][file_filename]["daterange"][0]) // tfreq_s
ts_step = tfreq_s // tfreq_s_ds
file_coords = slice(int(ts_start), int(ts_stop), int(ts_step))
else:
file_coords = (np.array(ts_indices) - self.dataset_config["memmap"][file_filename]["daterange"][
0]) // tfreq_s_ds
if not isinstance(file_coords, slice):
if config.get("interpolate", "NaN") == "nearest_past":
file_coords = np.floor(file_coords).astype(np.int)
elif config.get("interpolate", "NaN") == "nearest_future":
file_coords = np.ceil(file_coords).astype(np.int)
else:
file_coords = np.ma.array(file_coords,
mask=(file_coords - np.floor(file_coords)) != 0.0,
dtype=int,
fill_value=
self.dataset_config["memmap"][file_filename]["daterange"][
0])
# assign_dict_indices[file_filename] = file_coords
else:
# assign_dict_indices[file_filename] = None
file_coords = None
return file_coords, True
def __getitem__(self, index):
"""
Middleware between multiple datafiles (h5py or Memmap, doesn't matter) and Dataset object.
:param index:
:return:
"""
if isinstance(index, str):
index = (None, [index], None)
ts_indices = index[0]
cat_names = index[1]
config = index[2]
# Assign categories to be extracted from the correct files, and verify variables are available for the
# given timeranges
assign_dict = defaultdict(lambda: [])
assign_dict_indices = {}
unavailable_cats = []
for cat_name in cat_names:
cat_name_base = cat_name.split(":")[0]
if cat_name_base not in self.dataset_config["variables"]:
print(
"Cannot retrieve variable {} as it cannot be found in any of the dataset(s) at {}!".format(cat_name,
self.datapaths))
unavailable_cats.append(cat_name)
continue
file_filename = self.dataset_config["variables"][cat_name_base]["mmap_name"]
if file_filename not in assign_dict_indices:
file_coords, status = self._get_file_indices(ts_indices, cat_name, config)
if not status:
unavailable_cats.append(cat_name)
continue
else:
assign_dict_indices[file_filename] = file_coords
assign_dict[file_filename].append(cat_name)
results_dict = {}
for k, v in assign_dict.items():
indices = assign_dict_indices.get(k, None)
res = self.datasets[k][(indices, v)]
results_dict.update(res)
if len(unavailable_cats):
print("UNAVAILABLE CATS: ", unavailable_cats)
if len(results_dict.keys()) > 1:
return results_dict
else:
return results_dict[list(results_dict.keys())[0]]
class Dataset(torch.utils.data.Dataset):
'Characterizes a dataset for PyTorch'
def __init__(self, datapath,
partition_conf,
partition_type,
sample_conf,
partition_selected="train"):
# Initialization
self.sample_conf = sample_conf
self.datapath = datapath
self.partition_conf = partition_conf
self.partition_type = partition_type
self.partition_selected = partition_selected
self.debug_mode = False # return sample stride indices instead of sample
self.get_ts_only_mode = False # in ts_only_mode, __getitem__ only returns sample timestamps instead of values
self.sample_mode_order = sorted(self.sample_conf.keys())
# NOTE: may have to adjust
# Load Dataset
self.dataset = DatafileJoin(self.datapath)
# Calculate sample spreads
self._sample_spreads = {}
self._sample_offsets_left = {}
for sample_mode_name, sample_mode in self.sample_conf.items():
lowest_t = 0
highest_t = 0
for sample_section_name, sample_section in sample_mode.items():
for vbl_section_name, vbl_section in sample_section.items():
if "t" in vbl_section:
lowest_t = min(lowest_t, min(vbl_section["t"]))
highest_t = max(highest_t, max(vbl_section["t"]))
self._sample_spreads[sample_mode_name] = highest_t - lowest_t
self._sample_offsets_left[
sample_mode_name] = - lowest_t # NOTE: doesn't work if lowest_t > 0 *UNREALISTIC*
# Select partition
self.select_partition(self.partition_selected)
def get_file_indices_from_ts_range(self, ts_range, vbl_type, tfreq=None, expand=True):
rg = self.dataset._get_file_indices((*ts_range, tfreq), vbl_type, {})
if expand and isinstance(rg[0], slice):
ret = np.arange(rg[0].start, rg[0].stop, (rg[0].step if rg[0].step is not None else 1))
else:
ret = rg[0]
return ret
#return rg[0].data[0], rg[0].data[-1]
def get_partition_ts_segments(self, partition_selected):
"""
Returns an array of all contiguous timestamp ranges within a given partition
"""
if self.partition_type in ["range"]:
print("return range indices..")
return [self.partition_conf[partition_selected]["timerange"]]
elif self.partition_type in ["repeat"]:
print("return repeat indices...")
segs = []
selected_partition_id = [v["name"] for v in self.partition_conf["partitions"]].index(partition_selected)
partition_element_offset = (0 if self.selected_partition_id == 0 else sum(
v["len_s"] for v in self.partition_conf["partitions"][:selected_partition_id]))
cur_ts = self.partition_conf["timerange"][0] + partition_element_offset
tot_repeat_partition_element = sum(v["len_s"] for v in self.partition_conf["partitions"])
while cur_ts < self.partition_conf["timerange"][1]:
upper_ts = min(cur_ts + self.partition_conf["partitions"][selected_partition_id]["len_s"],
self.partition_conf["timerange"][1])
segs.append((cur_ts, upper_ts))
cur_ts += tot_repeat_partition_element
return segs
else:
raise Exception()
return sorted(list(idx_set))
def select_partition(self, partition_selected):
self.partition_selected = partition_selected
# Calculate sample type lengths, and also total lengths for different modes
self.n_all_samples = 0
self.n_samples = {}
if self.partition_type == "repeat":
self.selected_partition_id = [v["name"] for v in self.partition_conf["partitions"]].index(
self.partition_selected)
self.timerange_ts = self.partition_conf["timerange"]
# Calculate total repeat partition_element
tot_repeat_partition_element = sum(v["len_s"] for v in self.partition_conf["partitions"])
# For each sample type, determine how many samples there are in the given partitioning
for sample_mode_name, sample_mode in self.sample_conf.items():
sample_spread_s = self._sample_spreads[sample_mode_name]
# Tot repeat partition_element = [sec1, sec2, sec3] which are repeated then
# How often does the tot_repeat_partition_element fit into the whole dataset range?
timerange_ts = self.timerange_ts
# NOTE: We chop off data belonging to incomplete partition_elements at end of dataset and don't use it
n_partition_elements = int((timerange_ts[1] - timerange_ts[0]) // tot_repeat_partition_element)
increment_s = self.partition_conf["partitions"][self.selected_partition_id]["increment_s"]
len_s = self.partition_conf["partitions"][self.selected_partition_id]["len_s"]
n_samples_per_partition_element = math.floor(
len_s - sample_spread_s) // increment_s + 1 # NOTE: CHECK THIS!
n_tot_samples = n_samples_per_partition_element * n_partition_elements
self.n_samples[sample_mode_name] = n_tot_samples
self.n_all_samples += n_tot_samples
self.selected_partition_increment_s = increment_s
elif self.partition_type == "range":
for sample_mode_name, sample_mode in self.sample_conf.items():
sample_spread_s = self._sample_spreads[sample_mode_name]
increment_s = self.partition_conf[self.partition_selected]["increment_s"]
len_s = self.partition_conf[self.partition_selected]["timerange"][1] - \
self.partition_conf[self.partition_selected]["timerange"][0]
n_samples_per_partition_element = math.floor(len_s - sample_spread_s) // increment_s + 1
n_tot_samples = n_samples_per_partition_element
self.n_samples[sample_mode_name] = n_tot_samples
self.n_all_samples += n_tot_samples
self.selected_partition_increment_s = increment_s
else:
raise NotImplementedError()
self.sample_mode_binning = np.array([-1] + [self.n_samples[st] for st in self.sample_mode_order]).cumsum()
return
def get_sample_at(self, sample_mode_id, sample_ts, sample_idx=None):
if isinstance(sample_mode_id, str):
sample_mode_id_tmp = self.sample_mode_order.index(sample_mode_id)
assert sample_mode_id_tmp != -1, "Unknown sample mode id: {}".format(sample_mode_id)
sample_mode_id = sample_mode_id_tmp
sample_conf = self.sample_conf[self.sample_mode_order[sample_mode_id]]
sample_results = {}
indices_sampled = []
ts_sampled = []
for sample_section_name, sample_section in sample_conf.items():
sample_results[sample_section_name] = {}
for vbl_section_name, vbl_section in sample_section.items():
if vbl_section_name[:len("__const__")] == "__const__":
sample_results[sample_section_name][vbl_section_name] = vbl_section["val"]
continue
vbl_name = vbl_section["vbl"]
if vbl_name in ["__dummy__"]: # dummy variables can be used to enforce variable spreads
continue
if "t" not in vbl_section:
if not self.get_ts_only_mode:
sample_results[sample_section_name][vbl_section_name] = np.copy(self.dataset[vbl_name])
else:
vbl_t = vbl_section["t"](sample_ts, sample_idx) if callable(vbl_section["t"]) else vbl_section["t"]
if not self.get_ts_only_mode:
sample_results[sample_section_name][vbl_section_name] = \
self.dataset[(vbl_t + sample_ts,
[vbl_name],
{"interpolate": vbl_section.get("interpolate", "NaN")})]
sample_results[sample_section_name][vbl_section_name + "__ts"] = vbl_section["t"] + sample_ts
if self.debug_mode:
ts_sampled.append(vbl_t + sample_ts)
indices_sampled.append(self._get_file_indices(vbl_t + sample_ts, vbl_name, None))
if not isinstance(sample_results[sample_section_name][vbl_section_name], np.ndarray):
print(vbl_section_name, type(sample_results[sample_section_name][vbl_section_name]))
# "aggregation mode" allows for sample section slices to be aggregated over time in various ways
agg_mode = vbl_section["agg_mode"] if "agg_mode" in vbl_section else None
if agg_mode is not None:
if callable(agg_mode):
sample_results[sample_section_name][vbl_section_name] = \
agg_mode(sample_results[sample_section_name][vbl_section_name])
elif agg_mode in ["sum"]:
sample_results[sample_section_name][vbl_section_name] = \
np.sum(sample_results[sample_section_name][vbl_section_name], axis=0, keepdims=True)
elif agg_mode in ["mean"]:
sample_results[sample_section_name][vbl_section_name] =\
np.mean(sample_results[sample_section_name][vbl_section_name], axis=0, keepdims=True)
elif agg_mode in ["max"]:
sample_results[sample_section_name][vbl_section_name] = \
np.max(sample_results[sample_section_name][vbl_section_name], axis=0, keepdims=True)
elif agg_mode in ["min"]:
sample_results[sample_section_name][vbl_section_name] = \
np.min(sample_results[sample_section_name][vbl_section_name], axis=0, keepdims=True)
if self.debug_mode:
return ts_sampled, indices_sampled
return sample_results
def __len__(self):
'Denotes the total number of samples'
return self.n_all_samples
def __getitem__(self, index):
if isinstance(index, (tuple, str)):
"""
Dataset Access mode 1:
Retrieve one or several data categories given by cat_indices [lst of strings, or None if all]
at timestamp indices ts_indices [lst of either timestamps or tuples (start_ts, stop_ts, step_ts)]
using configuration parameters given by config_dict, e.g.
config_dict = {"interpolation": []}
or None if no configuration required
Index: (cat_indices, ts_indices, config_dict)
Returns dictionary of values or views (depending on contiguity of the data accessed)
"""
return self.dataset[index]
if not isinstance(index, list):
"""
Dataset Access mode 2:
Retrieve one or several samples from the dataset given the sample_configuration.
index needs to be a single index or a list of indices to be retrieved.
Returns dictionary of values or views (depending on contiguity of the data accessed)
"""
index = [index]
# Select sample
#print("max",max(index))
#assert max(index) < self.n_all_samples, "index {} out of range for dataset length {}".format(index,
#self.n_all_samples)
# identify which sample type the index corresponds to MODE NOT TYPE
sample_mode_ids = [bisect.bisect_left(self.sample_mode_binning, i) - 1 for i in index]
# calculate the central timestamps of the sample(s) to be retrieved
if self.partition_type == "repeat":
# Calculate the whole temporal length of repeating unit of the partitioning
tot_repeat_partition_element = sum(v["len_s"] for v in self.partition_conf["partitions"])
# Obtain increment and length of the currently selected partition
increment_s = self.partition_conf["partitions"][self.selected_partition_id]["increment_s"]
len_s = self.partition_conf["partitions"][self.selected_partition_id]["len_s"]
# Calculate the offset of the partition element
partition_element_offset = (0 if self.selected_partition_id == 0 else sum(
v["len_s"] for v in self.partition_conf["partitions"][:self.selected_partition_id]))
# Obtain the sample spreads
sample_spread_s_lst = [self._sample_spreads[self.sample_mode_order[sample_mode_id]] for sample_mode_id in
sample_mode_ids]
# Determine the sample modes offset that each given index falls into
sample_mode_offset_idx_lst = [index - self.sample_mode_binning[sample_mode_id] for sample_mode_id in
sample_mode_ids]
# Calculate how many samples fit into a single one of the currently selected partition elements
n_samples_per_partition_element = [math.floor(len_s - sample_spread_s) // increment_s + 1 for
sample_spread_s in sample_spread_s_lst]
# Calculate the repetition of the currently selected partition element that this sample falls into
partition_n = [int(sample_mode_idx // n_samples_per_partition_element) for sample_mode_idx in
sample_mode_offset_idx_lst]
# Calculate the offset of the sample within the partition element repetition of interest
partition_n_offset_lst = [int(off_idx % n_samples_per_partition_element) for off_idx in
sample_mode_offset_idx_lst]
# Calculate the sample mid-center timestamps
sample_ts_lst = [self.timerange_ts[0] + \
_partition_n * tot_repeat_partition_element + \
partition_element_offset + \
partition_n_offset * increment_s + \
self._sample_offsets_left[self.sample_mode_order[sample_mode_id]] for
_partition_n, partition_n_offset, sample_mode_id in
zip(partition_n, partition_n_offset_lst, sample_mode_ids)]
elif self.partition_type == "range":
# Obtain increment and length of the currently selected partition
increment_s = self.partition_conf[self.partition_selected]["increment_s"]
len_s = self.partition_conf[self.partition_selected]["timerange"][1] - \
self.partition_conf[self.partition_selected]["timerange"][0]
# Obtain the sample spreads
sample_spread_s_lst = [self._sample_spreads[self.sample_mode_order[sample_mode_id]] for sample_mode_id in
sample_mode_ids]
# Calculate how many samples fit into a single one of the currently selected partition elements
n_samples_per_partition_element = [math.floor(len_s - sample_spread_s) // increment_s + 1 for
sample_spread_s in sample_spread_s_lst]
# Determine the sample modes offset that each given index falls into
sample_mode_offset_idx_lst = [index - self.sample_mode_binning[sample_mode_id] for sample_mode_id in
sample_mode_ids]
# Calculate the offset of the sample within the partition element repetition of interest
partition_n_offset_lst = [int(off_idx % n_samples_per_partition_element) for off_idx in
sample_mode_offset_idx_lst]
sample_ts_lst = [self.partition_conf[self.partition_selected]["timerange"][0] + \
partition_n_offset * increment_s + \
self._sample_offsets_left[self.sample_mode_order[sample_mode_id]] for
partition_n_offset, sample_mode_id in
zip(partition_n_offset_lst, sample_mode_ids)]
else:
raise NotImplementedError()
if self.debug_mode:
# DEBUG mode exists in order to feed back which actual *timestamp ranges* have been covered by a particular
# sample. That does NOT mean that within this range, all variables have been densely sampled! It just
# returns a limit interval of what could have been sampled for debugging purposes.
ts_dct = {self.sample_mode_order[smid]: (int(ts) - self._sample_offsets_left[self.sample_mode_order[smid]],
int(ts) - self._sample_offsets_left[self.sample_mode_order[smid]] +
self._sample_spreads[self.sample_mode_order[smid]]) for ts, smid in
zip(sample_ts_lst, sample_mode_ids)}
return ts_dct
# Now actually load the sample data requested (NOTE: Can be performance-improved through compiling indices)
# First, we need to assign the different data categories to the different memmap files
results = []
indices_sampled = []
for i, (sample_mode_id, sample_ts) in enumerate(zip(sample_mode_ids, sample_ts_lst)):
sample_results = self.get_sample_at(sample_mode_id, sample_ts, index)
sample_results["__sample_modes__"] = self.sample_mode_order[sample_mode_id]
sample_results["__sample_ts__"] = sample_ts_lst
results.append(sample_results)
if self.debug_mode:
all_indices = set()
return results