-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrerad02.py
465 lines (348 loc) · 14.3 KB
/
rerad02.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
from __future__ import (
annotations as __annotations__,
) # Delayed parsing of type annotations
import mitsuba as mi
import drjit as dr
import numpy as np
from drjitstruct import drjitstruct
if __name__ == "__main__":
mi.set_variant("cuda_ad_rgb")
from hashgrid import HashGrid
def J(receiver_pos: mi.Vector3f, neighbor_res: "RestirSample") -> mi.Float:
v_new = receiver_pos - neighbor_res.x1
d_new = dr.norm(v_new)
cos_new = dr.clamp(dr.dot(v_new, neighbor_res.n1) / d_new, 0, 1)
v_old = neighbor_res.x0 - neighbor_res.x1
d_old = dr.norm(v_old)
cos_old = dr.clamp(dr.dot(v_old, neighbor_res.n1) / d_old, 0, 1)
div = cos_old * dr.sqr(d_new)
jacobian = dr.select(div > 0, cos_new * dr.sqr(d_old) / div, 0)
return jacobian
def mis_weight(pdf_a: mi.Float, pdf_b: mi.Float) -> mi.Float:
"""
Compute the Multiple Importance Sampling (MIS) weight given the densities
of two sampling strategies according to the power heuristic.
"""
a2 = dr.sqr(pdf_a)
return dr.detach(dr.select(pdf_a > 0, a2 / dr.fma(pdf_b, pdf_b, a2), 0), True)
def p_hat(f):
return dr.norm(f)
@drjitstruct
class RestirSample:
Li: mi.Vector3f
x0: mi.Point3f
n0: mi.Vector3f
n1: mi.Vector3f
x1: mi.Point3f
pq: mi.Float
@drjitstruct
class RestirReservoir:
z: RestirSample
w: mi.Float
W: mi.Float
M: mi.UInt
def update(
self,
sampler: mi.Sampler,
snew: RestirSample,
wnew: mi.Float,
active: mi.Bool = True,
):
active = mi.Bool(active)
if dr.shape(active)[-1] == 1:
dr.make_opaque(active)
self.w += dr.select(active, wnew, 0)
self.M += dr.select(active, 1, 0)
self.z: RestirSample = dr.select(
active & (sampler.next_1d() < wnew / self.w), snew, self.z
)
def merge(
self, sampler: mi.Sampler, r: "RestirReservoir", p, active: mi.Bool = True
):
active = mi.Bool(active)
M0 = mi.UInt(self.M)
self.update(sampler, r.z, p * r.W * r.M, active)
self.M = dr.select(active, M0 + r.M, M0)
class GReSTIRIntegrator(mi.SamplingIntegrator):
search_radius = 0.1
angle_threshold = 25 * dr.pi / 180
temporal_M_max = 10
def __init__(self):
self.max_depth = 8
self.rr_depth = 4
self.n = 0
super().__init__(mi.Properties())
def similar(self, s1: RestirSample, s2: RestirSample) -> mi.Bool:
similar = mi.Bool(True)
similar &= dr.dot(s1.n0, s2.n0) > dr.cos(self.angle_threshold)
similar &= dr.norm(s1.x0 - s2.x0) <= self.search_radius
return similar
def create_reservoirs(self, scene: mi.Scene, n: int):
sampler = mi.load_dict({"type": "independent"}) # type: mi.Sampler
sampler.seed(0, n)
m_area = []
for shape in scene.shapes():
m_area.append(shape.surface_area()[0])
m_area = np.array(m_area)
shape_sampler = mi.DiscreteDistribution(m_area)
self.shape_sampler = shape_sampler
shape_idx = shape_sampler.sample(sampler.next_1d())
shape = dr.gather(mi.ShapePtr, scene.shapes_dr(), shape_idx) # type: mi.Shape
ps = shape.sample_position(0.5, sampler.next_2d()) # type: mi.PositionSample3f
self.reservoirs = dr.zeros(RestirReservoir, n) # type: RestirReservoir
self.reservoirs.z.x0 = ps.p
self.reservoirs.z.n0 = ps.n
self.grid = HashGrid(
ps.p, 100, n
) # search radius has to be at least two times the cell width
self.n_reservoirs = n
def first_non_specular(
self,
scene: mi.Scene,
si: mi.SurfaceInteraction3f,
sampler: mi.Sampler,
active: mi.Bool,
) -> tuple[mi.SurfaceInteraction3f, mi.Color3f]:
max_iterations = 6
bsdf_ctx = mi.BSDFContext()
β = mi.Color3f(1)
depth = mi.UInt(0)
active = mi.Bool(active)
loop = mi.Loop("first_non_specular", lambda: (depth, active, β, sampler, si))
while loop(active):
bsdf: mi.BSDF = si.bsdf()
bsdf_sample, bsdf_weight = bsdf.sample(
bsdf_ctx, si, sampler.next_1d(), sampler.next_2d(), active
)
active &= si.is_valid() & (depth < max_iterations)
active &= ~mi.has_flag(bsdf_sample.sampled_type, mi.BSDFFlags.Smooth)
ray = si.spawn_ray(si.to_world(bsdf_sample.wo))
si[active] = scene.ray_intersect(
ray, ray_flags=mi.RayFlags.All, coherent=False, active=active
)
β[active] *= bsdf_weight
depth += 1
return si, β
def sample_ray(
self,
scene: mi.Scene,
sampler: mi.Sampler,
ray: mi.Ray3f,
active: bool = True,
) -> mi.Color3f:
# --------------------- Configure loop state ----------------------
ray = mi.Ray3f(ray)
active = mi.Bool(active)
throughput = mi.Spectrum(1.0)
result = mi.Spectrum(0.0)
eta = mi.Float(1.0)
depth = mi.UInt32(0)
valid_ray = mi.Bool(scene.environment() is not None)
# Variables caching information from the previous bounce
prev_si: mi.SurfaceInteraction3f = dr.zeros(mi.SurfaceInteraction3f)
prev_bsdf_pdf = mi.Float(1.0)
prev_bsdf_delta = mi.Bool(True)
bsdf_ctx = mi.BSDFContext()
loop = mi.Loop(
"Path Tracer",
state=lambda: (
sampler,
ray,
throughput,
result,
eta,
depth,
valid_ray,
prev_si,
prev_bsdf_pdf,
prev_bsdf_delta,
active,
),
)
loop.set_max_iterations(self.max_depth)
while loop(active):
si = scene.ray_intersect(ray) # TODO: not necesarry in first interaction
# ---------------------- Direct emission ----------------------
ds = mi.DirectionSample3f(scene, si, prev_si)
em_pdf = mi.Float(0.0)
em_pdf = scene.pdf_emitter_direction(prev_si, ds, ~prev_bsdf_delta)
mis_bsdf = mis_weight(prev_bsdf_pdf, em_pdf)
result = dr.fma(
throughput,
ds.emitter.eval(si, prev_bsdf_pdf > 0.0) * mis_bsdf,
result,
)
active_next = ((depth + 1) < self.max_depth) & si.is_valid()
bsdf: mi.BSDF = si.bsdf(ray)
# ---------------------- Emitter sampling ----------------------
active_em = active_next & mi.has_flag(bsdf.flags(), mi.BSDFFlags.Smooth)
ds, em_weight = scene.sample_emitter_direction(
si, sampler.next_2d(), True, active_em
)
wo = si.to_local(ds.d)
# ------ Evaluate BSDF * cos(theta) and sample direction -------
sample1 = sampler.next_1d()
sample2 = sampler.next_2d()
bsdf_val, bsdf_pdf, bsdf_sample, bsdf_weight = bsdf.eval_pdf_sample(
bsdf_ctx, si, wo, sample1, sample2
)
# --------------- Emitter sampling contribution ----------------
bsdf_val = si.to_world_mueller(bsdf_val, -wo, si.wi)
mi_em = dr.select(ds.delta, 1.0, mis_weight(ds.pdf, bsdf_pdf))
result[active_em] = dr.fma(throughput, bsdf_val * em_weight * mi_em, result)
# ---------------------- BSDF sampling ----------------------
bsdf_weight = si.to_world_mueller(bsdf_weight, -bsdf_sample.wo, si.wi)
ray = si.spawn_ray(si.to_world(bsdf_sample.wo))
# ------ Update loop variables based on current interaction ------
throughput *= bsdf_weight
eta *= bsdf_sample.eta
valid_ray |= (
active
& si.is_valid()
& ~mi.has_flag(bsdf_sample.sampled_type, mi.BSDFFlags.Null)
)
prev_si = si
prev_bsdf_pdf = bsdf_sample.pdf
prev_bsdf_delta = mi.has_flag(bsdf_sample.sampled_type, mi.BSDFFlags.Delta)
# -------------------- Stopping criterion ---------------------
depth[si.is_valid()] += 1
throughput_max = dr.max(throughput)
rr_prop = dr.minimum(throughput_max * dr.sqr(eta), 0.95)
rr_active = depth >= self.rr_depth
rr_continue = sampler.next_1d() < rr_prop
throughput[rr_active] *= dr.rcp(rr_prop)
active = (
active_next & (~rr_active | rr_continue) & (dr.neq(throughput_max, 0.0))
)
return dr.select(valid_ray, result, 0.0)
def generate_sample(self, scene: mi.Scene, sampler: mi.Sampler) -> RestirSample:
shape_idx = self.shape_sampler.sample(sampler.next_1d())
shape = dr.gather(mi.ShapePtr, scene.shapes_dr(), shape_idx) # type: mi.Shape
ps = shape.sample_position(0, sampler.next_2d())
si = mi.SurfaceInteraction3f(ps, dr.zeros(mi.Color0f))
si.shape = shape
bsdf = shape.bsdf()
sample = sampler.next_2d()
active_two_sided = mi.has_flag(bsdf.flags(), mi.BSDFFlags.BackSide)
wi = dr.select(
active_two_sided,
mi.warp.square_to_uniform_sphere(sample),
mi.warp.square_to_uniform_hemisphere(sample),
)
pq = dr.select(
active_two_sided,
mi.warp.square_to_uniform_sphere_pdf(wi),
mi.warp.square_to_uniform_hemisphere_pdf(wi),
)
si1 = scene.ray_intersect(
si.spawn_ray(si.to_world(wi))
) # type: mi.SurfaceInteraction3f
Li, _, _ = self.sample(
scene, sampler, si.spawn_ray(si.to_world(wi)), None, mi.Bool(True)
)
# Li = self.sample_ray(scene, sampler, si.spawn_ray(si.to_world(wi)))
sample = dr.zeros(RestirSample) # type: RestirSample
sample.Li = Li
sample.pq = pq
sample.x0 = si.p
sample.x1 = si1.p
sample.n0 = si.n
sample.n1 = si1.n
return sample
def temporal_resampling(self, scene: mi.Scene):
sampler = mi.load_dict({"type": "independent"}) # type: mi.Sampler
sampler.seed(self.n, self.n_reservoirs * 2)
new_sample = self.generate_sample(scene, sampler)
cell = self.grid.cell_idx(new_sample.x0)
cell_size = dr.gather(mi.UInt, self.grid.cell_size, cell)
index_in_cell = mi.UInt(dr.floor(sampler.next_1d() * cell_size))
reservoir_idx = self.grid.sample_idx_in_cell(cell, index_in_cell)
R = dr.gather(
RestirReservoir, self.reservoirs, reservoir_idx
) # type: RestirReservoir
Rnew = dr.zeros(RestirReservoir) # type: RestirReservoir
similar = self.similar(R.z, new_sample)
Rnew.merge(sampler, R, p_hat(R.z.Li), similar)
phat = p_hat(new_sample.Li) * J(Rnew.z.x0, new_sample)
w = dr.select(new_sample.pq > 0, phat / new_sample.pq, 0.0)
Rnew.update(sampler, new_sample, w)
Rnew.z.x0 = R.z.x0
Rnew.z.n0 = R.z.n0
phat = p_hat(Rnew.z.Li)
Rnew.W = dr.select(phat * Rnew.M > 0, Rnew.w / (Rnew.M * phat), 0)
Rnew.M = dr.clamp(Rnew.M, 0, self.temporal_M_max)
dr.scatter(self.reservoirs, Rnew, reservoir_idx, similar)
# self.reservoirs = Rnew
# self.grid = HashGrid(
# Rnew.z.x0, 100, self.n_reservoirs
# ) # search radius has to be at least two times the cell width
self.n += 1
def sample(
self,
scene: mi.Scene,
sampler: mi.Sampler,
ray: mi.RayDifferential3f,
medium: mi.Medium = None,
active: bool = True,
) -> tuple[mi.Color3f, bool, list[float]]:
# self.temporal_resampling(scene)
Rnew = dr.zeros(RestirReservoir) # type: RestirReservoir
si = scene.ray_intersect(ray, active) # type: mi.SurfaceInteraction3f
si, β = self.first_non_specular(scene, si, sampler, active)
S = dr.zeros(RestirSample) # type: RestirSample
S.x0 = si.p
S.n0 = si.n
for i in range(10):
offset = (
mi.warp.square_to_uniform_disk(sampler.next_2d()) * self.search_radius
)
p = si.p + si.to_world(mi.Point3f(offset.x, offset.y, 0))
cell = self.grid.cell_idx(p)
cell_size = dr.gather(mi.UInt, self.grid.cell_size, cell)
index_in_cell = mi.UInt(dr.floor(sampler.next_1d() * cell_size))
reservoir_idx = self.grid.sample_idx_in_cell(cell, index_in_cell)
Rn = dr.gather(
RestirReservoir, self.reservoirs, reservoir_idx
) # type: RestirReservoir
similar = self.similar(Rn.z, S)
shadowed = scene.ray_test(si.spawn_ray_to(Rn.z.x1))
Rnew.merge(
sampler,
Rn,
p_hat(Rn.z.Li) * dr.select(~shadowed & similar, 1, 0),
similar,
)
phat = p_hat(Rnew.z.Li)
Rnew.W = dr.select(phat * Rnew.M > 0, Rnew.w / (Rnew.M * phat), 0)
# Final sampling
bsdf = si.bsdf() # type: mi.BSDF
β = (
bsdf.eval(mi.BSDFContext(), si, si.to_local(dr.normalize(Rnew.z.x1 - si.p)))
* β
)
emittance = si.emitter(scene).eval(si)
result = Rnew.W * Rnew.z.Li * β + emittance
return mi.Color3f(result), True, []
if __name__ == "__main__":
scene = mi.cornell_box()
scene["sensor"]["film"]["width"] = 1024
scene["sensor"]["film"]["height"] = 1024
# scene["sensor"]["film"]["rfilter"] = mi.load_dict({"type": "box"})
scene = mi.load_dict(scene) # type: mi.Scene
scene = mi.load_file("./data/scenes/living-room-3/scene.xml")
scene = mi.load_file("./data/scenes/cornell-box-specular/scene.xml")
integrator = GReSTIRIntegrator()
print("Creating Reservoir:")
integrator.create_reservoirs(scene, 1_000_000)
# integrator.create_reservoirs((0.01, 0.01))
print("Rendering Images:")
for i in range(200):
integrator.temporal_resampling(scene)
img = mi.render(scene, integrator=integrator, spp=4, seed=i)
mi.util.write_bitmap(f"out/{i}.png", img)
# plt.imshow(mi.util.convert_to_bitmap(img))
# plt.show()
ref = mi.render(scene, spp=256)
# plt.imshow(mi.util.convert_to_bitmap(ref))
# plt.show()
mi.util.write_bitmap("out/ref.png", ref)