-
-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathyugefunc.avsi
418 lines (340 loc) · 22.1 KB
/
yugefunc.avsi
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
/*
IMPLEMENT:
getnative: https://github.com/Infiziert90/getnative
CheckMatrix: https://github.com/HomeOfVapourSynthEvolution/mvsfunc/blob/7948c8be129bc9cb282cf24e25b3c4b77328a9e0/mvsfunc.py#L1999
detail_enhancement https://github.com/WolframRhodium/muvsfunc/blob/80e99100c78b96b1c925a5989259ef22c1bc6173/Collections/muvsfunc_misc.py#L107
Defilter (https://github.com/WolframRhodium/muvsfunc/blob/80e99100c78b96b1c925a5989259ef22c1bc6173/muvsfunc.py#L1945)
firniture https://github.com/WolframRhodium/muvsfunc/blob/80e99100c78b96b1c925a5989259ef22c1bc6173/muvsfunc.py#L1688
soothe_mod (add to Sharpeners Pack) https://github.com/WolframRhodium/muvsfunc/blob/80e99100c78b96b1c925a5989259ef22c1bc6173/muvsfunc.py#L1301
LocalStatisticsMatching https://github.com/WolframRhodium/muvsfunc/blob/80e99100c78b96b1c925a5989259ef22c1bc6173/muvsfunc.py#L3771
GuidedFilterColor https://github.com/WolframRhodium/muvsfunc/blob/f524942ac6cacd937f9479a417eb308a335dfc1d/muvsfunc.py#L3246
LLSURE https://github.com/WolframRhodium/muvsfunc/blob/80e99100c78b96b1c925a5989259ef22c1bc6173/muvsfunc.py#L4143
BMAFilter https://github.com/WolframRhodium/muvsfunc/blob/80e99100c78b96b1c925a5989259ef22c1bc6173/muvsfunc.py#L4022
MaskedLimitFilter https://github.com/WolframRhodium/muvsfunc/blob/80e99100c78b96b1c925a5989259ef22c1bc6173/muvsfunc.py#L4759
S_BoxFilter https://github.com/WolframRhodium/muvsfunc/blob/80e99100c78b96b1c925a5989259ef22c1bc6173/muvsfunc.py#L5443
Wiener2 https://github.com/WolframRhodium/muvsfunc/blob/80e99100c78b96b1c925a5989259ef22c1bc6173/Collections/muvsfunc_misc.py#L170
tv https://github.com/WolframRhodium/muvsfunc/blob/80e99100c78b96b1c925a5989259ef22c1bc6173/Collections/muvsfunc_misc.py#L229
BernsteinFilter https://github.com/WolframRhodium/muvsfunc/blob/80e99100c78b96b1c925a5989259ef22c1bc6173/Collections/muvsfunc_misc.py#L282
GPA https://github.com/WolframRhodium/muvsfunc/blob/80e99100c78b96b1c925a5989259ef22c1bc6173/Collections/muvsfunc_misc.py#L315
sbr_detail https://github.com/WolframRhodium/muvsfunc/blob/80e99100c78b96b1c925a5989259ef22c1bc6173/Collections/muvsfunc_misc.py#L453
chroma_reconstruct https://github.com/Irrational-Encoding-Wizardry/lvsfunc/blob/bffb6fa6b9f78f2e02e309b6e8fb606b471b0958/lvsfunc/recon.py#L22
*/
#######################################################################
### ###
### yugefunc v1.1 (19-02-2023) ###
### ###
### Collection of VapourSynth functions ported to AviSynth+ ###
### ###
#######################################################################
## ex_guidedblur() port from WolframRhodium's VapourSynth function in muvsfunc.py
## (https://github.com/WolframRhodium/muvsfunc/blob/master/muvsfunc.py#L2983)
##
## Guided Filter - fast edge-preserving smoothing algorithm
## Author: Kaiming He et al. (https://kaiminghe.com/eccv10/)
##
## The guided filter computes the filtering output by considering the content of a guidance image.
## It can be used as an edge-preserving smoothing operator like the popular bilateral filter,
## but it has better behaviors near edges.
## The guided filter is also a more generic concept beyond smoothing:
## It can transfer the structures of the guidance image to the filtering output,
## enabling new filtering applications like detail enhancement, HDR compression,
## image matting/feathering, dehazing, joint upsampling, etc.
## All the internal calculations are done at 32-bit float.
##
##
## Args:
##
## radius: (int) Box / Gaussian filter's radius.
## If box filter is used, the range of radius is 1 ~ 12(fast=False) or 1 ~ 12*subsampling_ratio in VapourSynth R38 or older
## because of the limitation of std.Convolution().
## For gaussian filter, the radius can be much larger, even reaching the width/height of the clip.
## Default is 2.
## guidance: (clip) Guidance clip used to compute the coefficient of the linear translation on 'input'.
## It must has the same clip properties as 'input'.
## If it is None, it will be set to input, with duplicate calculations being omitted.
## Default is None.
## regulation: (float) A criterion for judging whether a patch has high variance and should be preserved, or is flat and should be smoothed.
## Similar to the range variance in the bilateral filter.
## Use negative to revert the effect (blur edges, else keep intact)
## Default is 0.01.
## regulation_mode: (int) Tweak on regulation.
## It was mentioned in [1] that the local filters such as the Bilateral Filter (BF) or Guided Image Filter (GIF)
## would concentrate the blurring near these edges and introduce halos.
## The author of Weighted Guided Image Filter (WGIF) [3] argued that,
## the Lagrangian factor (regulation) in the GIF is fixed could be another major reason that the GIF produces halo artifacts.
## In [3], a WGIF was proposed to reduce the halo artifacts of the GIF.
## An edge aware factor was introduced to the constraint term of the GIF,
## the factor makes the edges preserved better in the result images and thus reduces the halo artifacts.
## In [4], a gradient domain guided image filter is proposed by incorporating an explicit first-order edge-aware constraint.
## The proposed filter is based on local optimization
## and the cost function is composed of a zeroth order data fidelity term and a first order regularization term.
## So the factors in the new local linear model can represent the images more accurately near edges.
## In addition, the edge-aware factor is multi-scale, which can separate edges of an image from fine details of the image better.
## 0: Guided Filter [1]
## 1: Weighted Guided Image Filter [3]
## 2: Gradient Domain Guided Image Filter [4]
## Default is 0.
## use_gauss: (bool) Whether to use gaussian guided filter [1]. This replaces mean filter with gaussian filter.
## Guided filter is rotationally asymmetric and slightly biases to the x/y-axis because a box window is used in the filter design.
## The problem can be solved by using a gaussian weighted window instead. The resulting kernels are rotationally symmetric.
## The authors of [1] suggest that in practice the original guided filter is always good enough.
## Gaussian is performed by core.tcanny.TCanny(mode=-1).
## The sigma is set to r/sqrt(2).
## Default is True.
## fast: (bool) Whether to use fast guided filter [2].
## This method subsamples the filtering input image and the guidance image,
## computes the local linear coefficients, and upsamples these coefficients.
## The upsampled coefficients are adopted on the original guidance image to produce the output.
## This method reduces the time complexity from O(N) to O(N/s^2) for a subsampling ratio s.
## Default is False.
## subsampling_ratio: (float) Only works when fast=True.
## Generally should be no less than 'radius'.
## Default is 4.
## show: (bool) to show the mask, instead of filtering.
## Default is false.
## kernel1, kernel2: (string) Subsampling/upsampling kernels.
## Default is 'point'and 'bilinear'.
##
## Ref:
## [1] He, K., Sun, J., & Tang, X. (2013). Guided image filtering.
## IEEE transactions on pattern analysis and machine intelligence, 35(6), 1397-1409.
## [2] He, K., & Sun, J. (2015). Fast guided filter. arXiv preprint arXiv:1505.00996.
## [3] http://kaiminghe.com/eccv10/index.html
## [4] Li, Z., Zheng, J., Zhu, Z., Yao, W., & Wu, S. (2015). Weighted guided image filtering.
## IEEE Transactions on Image Processing, 24(1), 120-129.
## [5] Kou, F., Chen, W., Wen, C., & Li, Z. (2015). Gradient domain guided image filtering.
## IEEE Transactions on Image Processing, 24(11), 4528-4539.
## [6] http://koufei.weebly.com/
# * ex_guidedblur(radius=r) is the slow (10% fps) but edge preserving equivalent of ex_blur(r-2) (with Defaults)
function ex_guidedblur(clip a, float "radius", clip "guidance", float "regulation", int "regulation_mode", bool "use_gauss", bool "fast", \
int "subsampling_ratio", string "kernel1", string "kernel2", bool "show", int "UV") {
rgb = isRGB(a)
isy = isy(a)
bi = BitsPerComponent(a)
fs = propNumElements(a, "_ColorRange") > 0 ? \
propGetInt (a, "_ColorRange") == 0 : rgb
fa = Default(fast, false) # Might need to readjust 'radius' to match when fast=false
s = Default(subsampling_ratio, 2)
r = Default(radius, 2)
gd = Default(guidance, Undefined()) # Optional: use a gradient magnitude clip here (ie. frei-chen edge mask, etc)
eps = Default(regulation, 0.01)
rm = Default(regulation_mode, 0) # 0: Original Guided Filter, 1: Weighted Guided Image Filter, 2: Gradient Domain Guided Image Filter
ga = Default(use_gauss, true) # 'use_gauss = false' stepping is in integer increments
sh = Default(show, false)
kn1 = Default(kernel1, "Precise")
kn2 = Default(kernel2, "Precise")
UV = Default(UV, rgb ? 3 : 2)
r = fa ? r/float(s) : r
epr = eps < 0 ? "range_max swap -" : ""
eps = abs(eps)
isg = Defined(gd)
w = a.width()
h = a.height()
p = a
I = isg ? gd : p
# Back up guidance image
I_src = I.ConvertBits(32, fulls=fs, fulld=true)
# Fast guided filter's subsampling
r = fa ? float(r) /s : r
p = fa ? p.RatioResize(1./s, "%", kernel=kn1) : p
I = fa ? I.RatioResize(1./s, "%", kernel=kn1) : I
p = p.ConvertBits(32, fulls=fs, fulld=true)
I = I.ConvertBits(32, fulls=fs, fulld=true)
function Filter(clip clp, float r, bool use_gauss, int UV) {
sigY = r/2.*sqrt(2)
use_gauss ? clp.vsTCanny(sigY,mode=-1,u=uv,v=uv) : clp.ex_boxblur(floor(r),mode="mean", UV=uv) }
function Filter_r1(clip clp, bool use_gauss, int UV) {
use_gauss ? clp.removegrain(12,uv==3?12:-1) : clp.ex_boxblur(1 ,mode="mean", UV=uv) }
# Compute local linear coefficients.
mean_p = Filter(p,r,ga,uv)
mean_I = isg ? Filter(I,r,ga,uv) : mean_p
I_square = ex_lut(I, "x dup *", UV=uv, scale_inputs="none")
corr_I = Filter(I_square,r,ga,uv)
corr_Ip = isg ? Filter(ex_lutxy(I, p, "x y *", UV=uv, scale_inputs="none"),r,ga,uv) : corr_I
var_I = ex_lutxy (corr_I, mean_I, "x y dup * -", UV=uv, scale_inputs="none")
cov_Ip = isg ? ex_lutxyz(corr_Ip, mean_I, mean_p, "x y z * -", UV=uv, scale_inputs="none") : var_I
if (rm>0) {
if (r != 1) {
mean_I_1 = Filter_r1(I, ga,uv)
corr_I_1 = Filter_r1(I_square,ga,uv)
var_I_1 = ex_lutxyz(corr_I_1, mean_I_1, var_I, "x y dup * - z * sqrt", UV=uv, scale_inputs="none")
} else { var_I_1 = var_I }
weight_in = var_I_1
if (rm == 1) {
a = ScriptClip(weight_in, function [weight_in, cov_Ip, var_I, eps, epr, uv] () {
# Edge-Aware Weighting, equation (5) in [3], or equation (9) in [4].
avg = 1. / AverageLuma(weight_in)
ex_lutxyz(cov_Ip, var_I, weight_in, Format("x y {eps} z 0.000001 + {avg} * / + / "+epr), UV=uv, scale_inputs="none")
} )
} else {
a = ScriptClip(weight_in, function [weight_in, cov_Ip, var_I, eps, epr, uv] () {
# Edge-Aware Weighting, equation (5) in [3], or equation (9) in [4].
Denominator = ex_lutxy(var_I, weight_in, Format("1 x y * sqrt {eps} + /"), UV=uv, scale_inputs="none")
avg = AverageLuma(Denominator)
weight = ex_lut(weight_in, Format("x {eps} + {avg} *"), UV=uv, scale_inputs="none")
# Compute the optimal value of a of Gradient Domain Guided Image Filter, equation (12) in [4]
frameMean = AverageLuma(weight)
frameMin = YPlaneMin(weight)
alpha = frameMean
kk = -4 / (frameMin - alpha - 0.000001) # Add a small num to prevent divided by 0
ex_lutxyza(cov_Ip, weight_in, weight, var_I, Format("x {eps} 1 1 1 {kk} y {alpha} - * exp + / - * z / + a {eps} z / + / 0 max "+epr), UV=uv, scale_inputs="none")
} ) }
} else {
a = ex_lutxy(cov_Ip, var_I, Format("x y {eps} + / "+epr), UV=uv, scale_inputs="none") # regulation_mode = 0, Original Guided Filter
}
b = ex_lutxyz(mean_p, a, mean_I, "x y z * -", scale_inputs="none")
mean_a = Filter(a,r,ga,uv)
mean_b = Filter(b,r,ga,uv)
# Fast guided filter's upsampling
ratio = float(w)/round(float(w)/s)
mean_a = fa ? mean_a.RatioResize(ratio, "%", kernel=kn2) : mean_a
mean_b = fa ? mean_b.RatioResize(ratio, "%", kernel=kn2) : mean_b
# Linear translation
q = !sh ? ex_lutxyz(mean_a, I_src, mean_b, "x y * z +", UV=uv, scale_inputs="none") : a
# Final bitdepth conversion
bi != 32 ? ConvertBits(q, bi, dither=1, fulls=true, fulld=fs) : \
ConvertBits(q, bi, fulls=true, fulld=fs) }
## ex_ANguidedblur() port from WolframRhodium's VapourSynth function in muvs
## (https://github.com/WolframRhodium/muvsfunc/wiki/muvs-tutorial#anisotropic-guided-filtering)
##
## Anisotropic Guided Filtering
##
## The guided filter and its subsequent derivatives have been widely employed in many image processing and computer vision applications
## primarily brought about by their low complexity and good edge-preservation properties. Despite this success, the different variants of
## the guided filter are unable to handle more aggressive filtering strengths leading to the manifestation of detail halos.
## At the same time, these existing filters perform poorly when the input and guide images have structural inconsistencies. In this paper,
## we demonstrate that these limitations are due to the guided filter operating as a variable-strength locally-isotropic filter that, in effect,
## acts as a weak anisotropic filter on the image. Our analysis shows that this behaviour stems from the use of unweighted averaging in the final steps
## of guided filter variants including the adaptive guided filter (AGF), weighted guided image filter (WGIF), and gradient-domain guided image filter (GGIF).
## We propose a novel filter, the Anisotropic Guided Filter (AnisGF), that utilises weighted averaging to achieve maximum diffusion while preserving strong edges in the image.
## The proposed weights are optimised based on the local neighbourhood variances to achieve strong anisotropic filtering
##
##
## Args:
##
## radius: (float) Box / Gaussian filter's radius.
## Default is 2.
##
## guidance: (clip) Guidance clip used to compute the coefficient of the linear translation on 'clip'.
## It must has the same clip properties as 'clip'.
## Default is Undefined.
##
## gamma: (float) Positive scalar value that controls the smoothness of the guided filter.
## A small value preserves more detail while a large value promotes smoothing.
## Use negative to revert the effect (blur edges, else keep intact)
## Default is 0.01.
##
## epsilon: (float) Positive scalar value that regularizes the anisotropic weights.
## A large value will promote more isotropy
## while a small value will emphasize the anisotropic behavior.
## Default is 2^(-8).
##
## use_gauss: (bool) Whether to use gaussian guided filter.
## Default is True.
##
## sigma: (bool) Scaled noise variance of the image.
## If it is None, it is estimated from the image.
## Default is False.
##
## adaptive: (bool) Boolean flag that controls the behavior of the guided filter.
## It enables the adaptation of the guided filter regularizer (gamma)
## to better preserve details in the image.
## Default is True.
##
## show: (bool) Show the mask.
## Default is False.
##
## Ref:
## [1] C. N. Ochotorena and Y. Yamashita, "Anisotropic Guided Filtering,"
## in IEEE Transactions on Image Processing, vol. 29, pp. 1397-1412, 2020,
## doi: 10.1109/TIP.2019.2941326.
function ex_ANguidedblur(clip clp, float "radius", clip "guidance", float "gamma", bool "alpha", float "epsilon", bool "use_gauss", bool "sigma", bool "adaptive", bool "show", int "UV") {
rgb = isRGB(clp)
isy = isy(clp)
bi = BitsPerComponent(clp)
fs = propNumElements(clp, "_ColorRange") > 0 ? \
propGetInt (clp, "_ColorRange") == 0 : rgb
gd = Default(guidance, Undefined()) # Optional: use a gradient magnitude clip here (ie. frei-chen edge mask, etc)
r = Default(radius, 2)
gm = Default(gamma, 0.01)
al = Default(alpha, false)
ga = Default(use_gauss, true)
eps = Default(epsilon, 0.003906250)
sm = Default(sigma, false)
ad = Default(adaptive, true)
sh = Default(show, false)
UV = Default(UV, rgb ? 3 : 2)
fr = floor(r)
isg = Defined(gd)
clp = clp.ConvertBits(32, fulls=fs, fulld=true)
gd = isg ? gd.ConvertBits(32, fulls=fs, fulld=true) : clp
gmn = gm < 0 ? "range_max swap -" : ""
gm = abs(gm)
alpha = !al ? max(log10(gm) + 3, 0) : 1
if (!isg) {
X1 = clp.ex_boxblur(fr,mode="mean",UV=uv)
X2 = ex_lut (clp, "x dup *" , UV=uv, scale_inputs="none").ex_boxblur(fr,mode="mean",UV=uv)
W = ex_lutxy(X1, X2, "y x dup * -", UV=uv, scale_inputs="none")
} else {
G1 = guidance.ex_boxblur(fr,mode="mean",UV=uv)
G2 = ex_lut(guidance,"x dup *" ,UV=uv, scale_inputs="none").ex_boxblur(fr,mode="mean",UV=uv)
X1 = clp.ex_boxblur(fr,mode="mean",UV=uv)
XG = ex_lutxy(clp,guidance,"x y *" ,UV=uv, scale_inputs="none").ex_boxblur(fr,mode="mean",UV=uv)
W = ex_lutxy(G1, G2, "y x dup * -",UV=uv, scale_inputs="none")
}
coeff = 0.0002 * (2 * r + 1) * gm
gamma = ad ? Format("dup {coeff} swap 0.000001 + /") : Format("{gm}")
A = !isg ? ex_lut(W, "x dup "+gamma+" + / "+gmn ,UV=uv, scale_inputs="none") : \
ex_lutxyza(W,XG,X1,G1,"y z a * - x "+gamma+" + / "+gmn,UV=uv, scale_inputs="none")
B = !isg ? ex_lutxy (A,X1, "1 x - y *" ,UV=uv, scale_inputs="none") : \
ex_lutxyz (A,X1,G1, "y x z * -" ,UV=uv, scale_inputs="none")
# unsharp mask with ad hoc divisor
div = sqrt(pi/2) / 6
sigma = !sm ? ex_lut(gd,Format("x[-1,1] x[1,1] x[-1,-1] x[1,-1] x[0,0] 4 * + + + + x[0,1] x[-1,0] x[1,0] x[0,-1] + + + 2 * - {div} *"),UV=uv, scale_inputs="none") : nop()
coeff = pow(2 * r + 1, 2)
W = Scriptclip(W, function [W,coeff,alpha,eps,sm,sigma,uv] () {
avg = !sm ? string(min(-eps,pow(sigma.AverageLuma(),2)))+" -" : "" # This line is causing NaN blocks, fix (originally without min())
ex_lut(W,Format("{eps} {coeff} x "+avg+" * {alpha} ^ {eps} + / range_max swap -"), UV=uv, scale_inputs="none") } )
WA = ex_lutxy(W,A,"x y *",UV=uv, scale_inputs="none")
WB = ex_lutxy(W,B,"x y *",UV=uv, scale_inputs="none")
sigY = r/2.+0.25
A = ga ? WA.vsTCanny(sigY,mode=-1,u=uv,v=uv) : WA.ex_boxblur(fr,mode="mean",UV=uv)
B = ga ? WB.vsTCanny(sigY,mode=-1,u=uv,v=uv) : WB.ex_boxblur(fr,mode="mean",UV=uv)
W = ga ? W.vsTCanny(sigY,mode=-1,u=uv,v=uv) : W.ex_boxblur(fr,mode="mean",UV=uv)
res = !sh ? ex_lutxyza(gd,A,B,W,"y x * z + a /",UV=uv, scale_inputs="none") : A
bi != 32 ? ConvertBits(res, bi, dither=1, fulls=true, fulld=fs) : \
ConvertBits(res, bi, fulls=true, fulld=fs) }
/*
XDoG - An eXtended difference-of-Gaussian filter (WIP)
https://github.com/WolframRhodium/muvsfunc/blob/80e99100c78b96b1c925a5989259ef22c1bc6173/Collections/muvsfunc_misc.py#L417
Args:
clip: Input clip.
sigma: (float) Strength of gaussian filter.
Default is 1.
k: (float) Amplifier of "sigma" for second gaussian filtering.
Default is 1.6.
p: (float) Amplifier of difference of gaussian.
Default is 20.
epsilon: (float, 0~1) Threshold of DoG response. Scaled automatically.
Default is 0.7.
lamda: (float) Multiplier in the thresholding function.
Default is 0.01.
Ref:
[1] Winnemöller, H., Kyprianidis, J. E., & Olsen, S. C. (2012). XDoG: an extended difference-of-Gaussians compendium including advanced image stylization. Computers & Graphics, 36(6), 740-753.
*/
function XDoG(clip a, float "sigma", float "k", int "p", float "epsilon", float "lamda") {
rgb = isRGB(a)
isy = isy(a)
bi = BitsPerComponent(a)
sm = Default(sigma, 1.0) # Strength of gaussian filter
k = Default(k, 1.6) # Amplifier of "sigma" for second gaussian filtering
p = Default(p, 20) # Amplifier of difference of gaussian
eps = Default(epsilon, 0.7) # Threshold of DoG response. Scaled automatically
lam = Default(lamda, 0.01) # Multiplier in the thresholding function
eps = ex_bs(eps, 32, bi, true, flt=true)
# eps = ex_bs(eps, 8, bi, true)
# eps = eps
f1 = vsTCanny(a, sigmaY=sm, mode=-1)
f2 = vsTCanny(a, sigmaY=sm * k, mode=-1)
ex_lutxy(f1, f2, Format("x y - {p} * x + A@ {eps} >= range_max 2 2 A {eps} - {lam} * 2 * exp 1 + / - range_max * ? ")) }
# return core.std.Expr([f1, f2], f'x y - {p} * x + {epsilon} >= 1 2 2 2 x y - {p} * x + {epsilon} - {lamda} * * exp 1 + / - ? {peak} *')