forked from stripe/veneur
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathflusher.go
534 lines (468 loc) · 18.4 KB
/
flusher.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
package veneur
import (
"context"
"fmt"
"net/http"
"reflect"
"runtime"
"strings"
"sync"
"sync/atomic"
"time"
"github.com/axiomhq/hyperloglog"
"github.com/sirupsen/logrus"
"github.com/stripe/veneur/forwardrpc"
vhttp "github.com/stripe/veneur/http"
"github.com/stripe/veneur/samplers"
"github.com/stripe/veneur/samplers/metricpb"
"github.com/stripe/veneur/sinks"
"github.com/stripe/veneur/ssf"
"github.com/stripe/veneur/trace"
"github.com/stripe/veneur/trace/metrics"
"google.golang.org/grpc/status"
)
// Flush collects sampler's metrics and passes them to sinks.
func (s *Server) Flush(ctx context.Context) {
span := tracer.StartSpan("flush").(*trace.Span)
defer span.ClientFinish(s.TraceClient)
mem := &runtime.MemStats{}
runtime.ReadMemStats(mem)
flushTime := time.Now().UnixNano()
atomic.StoreInt64(&s.lastFlushUnix, flushTime)
s.Statsd.Gauge("worker.span_chan.total_elements", float64(len(s.SpanChan)), nil, 1.0)
s.Statsd.Gauge("worker.span_chan.total_capacity", float64(cap(s.SpanChan)), nil, 1.0)
s.Statsd.Gauge("gc.number", float64(mem.NumGC), nil, 1.0)
s.Statsd.Gauge("gc.pause_total_ns", float64(mem.PauseTotalNs), nil, 1.0)
s.Statsd.Gauge("mem.heap_alloc_bytes", float64(mem.HeapAlloc), nil, 1.0)
s.Statsd.Gauge("flush.flush_timestamp_ns", float64(flushTime), nil, 1.0)
if s.CountUniqueTimeseries {
s.Statsd.Count("flush.unique_timeseries_total", s.tallyTimeseries(), []string{fmt.Sprintf("global_veneur:%t", !s.IsLocal())}, 1.0)
}
samples := s.EventWorker.Flush()
// TODO Concurrency
for _, sink := range s.metricSinks {
sink.FlushOtherSamples(span.Attach(ctx), samples)
}
go s.flushTraces(span.Attach(ctx))
var finalMetrics []samplers.InterMetric
// This ensures that mixedscope histograms and timers behave correctly.
// That is, they should emit aggregates when forwarding, but no percentiles.
// Similarly, they should emit percentiles when global, but no aggregates.
//
// This serves two purposes:
// * Percentiles are only accurate when aggregated globally.
// * Avoid double counting and breaking existing queries (if count is also
// emitted globally, queries that sum over counts double!)
var percentiles []float64
aggregates := s.HistogramAggregates
if !s.IsLocal() {
percentiles = s.HistogramPercentiles
aggregates = samplers.HistogramAggregates{}
}
tempMetrics, ms := s.tallyMetrics(percentiles)
finalMetrics = s.generateInterMetrics(span.Attach(ctx), percentiles, aggregates, tempMetrics, ms)
s.reportMetricsFlushCounts(ms)
wg := sync.WaitGroup{}
if s.IsLocal() {
wg.Add(1)
// Forward over gRPC or HTTP depending on the configuration
if s.forwardUseGRPC {
go func() {
s.forwardGRPC(span.Attach(ctx), tempMetrics)
wg.Done()
}()
} else {
go func() {
s.flushForward(span.Attach(ctx), tempMetrics)
wg.Done()
}()
}
} else {
s.reportGlobalMetricsFlushCounts(ms)
}
// If there's nothing to flush, don't bother calling the plugins and stuff.
if len(finalMetrics) == 0 {
return
}
for _, sink := range s.metricSinks {
wg.Add(1)
go func(ms sinks.MetricSink) {
err := ms.Flush(span.Attach(ctx), finalMetrics)
if err != nil {
log.WithError(err).WithField("sink", ms.Name()).Warn("Error flushing sink")
}
wg.Done()
}(sink)
}
wg.Wait()
go func() {
samples := &ssf.Samples{}
defer metrics.Report(s.TraceClient, samples)
tags := map[string]string{"part": "post"}
for _, p := range s.getPlugins() {
start := time.Now()
err := p.Flush(span.Attach(ctx), finalMetrics)
samples.Add(ssf.Timing(fmt.Sprintf("flush.plugins.%s.total_duration_ns", p.Name()), time.Since(start), time.Nanosecond, tags))
if err != nil {
samples.Add(ssf.Count(fmt.Sprintf("flush.plugins.%s.error_total", p.Name()), 1, nil))
}
samples.Add(ssf.Gauge(fmt.Sprintf("flush.plugins.%s.post_metrics_total", p.Name()), float32(len(finalMetrics)), nil))
}
}()
}
func (s *Server) tallyTimeseries() int64 {
allTimeseries := hyperloglog.New()
for _, w := range s.Workers {
w.uniqueMTSMtx.Lock()
allTimeseries.Merge(w.uniqueMTS)
w.uniqueMTS = hyperloglog.New()
w.uniqueMTSMtx.Unlock()
}
return int64(allTimeseries.Estimate())
}
type metricsSummary struct {
totalCounters int
totalGauges int
totalHistograms int
totalSets int
totalTimers int
totalGlobalCounters int
totalGlobalGauges int
totalGlobalHistograms int
totalGlobalTimers int
totalLocalHistograms int
totalLocalSets int
totalLocalTimers int
totalLocalStatusChecks int
totalLength int
}
// tallyMetrics gives a slight overestimate of the number
// of metrics we'll be reporting, so that we can pre-allocate
// a slice of the correct length instead of constantly appending
// for performance
func (s *Server) tallyMetrics(percentiles []float64) ([]WorkerMetrics, metricsSummary) {
// allocating this long array to count up the sizes is cheaper than appending
// the []WorkerMetrics together one at a time
tempMetrics := make([]WorkerMetrics, 0, len(s.Workers))
ms := metricsSummary{}
for i, w := range s.Workers {
log.WithField("worker", i).Debug("Flushing")
wm := w.Flush()
tempMetrics = append(tempMetrics, wm)
ms.totalCounters += len(wm.counters)
ms.totalGauges += len(wm.gauges)
ms.totalHistograms += len(wm.histograms)
ms.totalSets += len(wm.sets)
ms.totalTimers += len(wm.timers)
ms.totalGlobalCounters += len(wm.globalCounters)
ms.totalGlobalGauges += len(wm.globalGauges)
ms.totalGlobalHistograms += len(wm.globalHistograms)
ms.totalGlobalTimers += len(wm.globalTimers)
ms.totalLocalHistograms += len(wm.localHistograms)
ms.totalLocalSets += len(wm.localSets)
ms.totalLocalTimers += len(wm.localTimers)
ms.totalLocalStatusChecks += len(wm.localStatusChecks)
}
ms.totalLength = ms.totalCounters + ms.totalGauges +
// histograms and timers each report a metric point for each percentile
// plus a point for each of their aggregates
(ms.totalTimers+ms.totalHistograms)*(s.HistogramAggregates.Count+len(percentiles)) +
// local-only histograms will be flushed with percentiles, so we intentionally
// use the original percentile list here.
// remember that both the global veneur and the local instances have
// 'local-only' histograms.
ms.totalLocalSets + (ms.totalLocalTimers+ms.totalLocalHistograms)*(s.HistogramAggregates.Count+len(s.HistogramPercentiles))
// Global instances also flush sets and global counters, so be sure and add
// them to the total size
if !s.IsLocal() {
ms.totalLength += ms.totalSets
ms.totalLength += ms.totalGlobalCounters
ms.totalLength += ms.totalGlobalGauges
ms.totalLength += ms.totalGlobalHistograms * (s.HistogramAggregates.Count + len(s.HistogramPercentiles))
ms.totalLength += ms.totalGlobalTimers * (s.HistogramAggregates.Count + len(s.HistogramPercentiles))
}
return tempMetrics, ms
}
// generateInterMetrics calls the Flush method on each
// counter/gauge/histogram/timer/set in order to
// generate an InterMetric corresponding to that value
func (s *Server) generateInterMetrics(ctx context.Context, percentiles []float64, aggregates samplers.HistogramAggregates, tempMetrics []WorkerMetrics, ms metricsSummary) []samplers.InterMetric {
span, _ := trace.StartSpanFromContext(ctx, "")
defer span.ClientFinish(s.TraceClient)
finalMetrics := make([]samplers.InterMetric, 0, ms.totalLength)
for _, wm := range tempMetrics {
for _, c := range wm.counters {
finalMetrics = append(finalMetrics, c.Flush(s.interval)...)
}
for _, g := range wm.gauges {
finalMetrics = append(finalMetrics, g.Flush()...)
}
// if we're a local veneur, then percentiles=nil, and only the local
// parts (count, min, max) will be flushed
//
// if we're a global veneur, aggregates will be nil.
for _, h := range wm.histograms {
finalMetrics = append(finalMetrics, h.Flush(s.interval, percentiles, s.HistogramAggregates, false)...)
}
for _, t := range wm.timers {
finalMetrics = append(finalMetrics, t.Flush(s.interval, percentiles, s.HistogramAggregates, false)...)
}
// local-only samplers should be flushed in their entirety, since they
// will not be forwarded
// we still want percentiles for these, even if we're a local veneur, so
// we use the original percentile list when flushing them
for _, h := range wm.localHistograms {
finalMetrics = append(finalMetrics, h.Flush(s.interval, s.HistogramPercentiles, s.HistogramAggregates, false)...)
}
for _, s := range wm.localSets {
finalMetrics = append(finalMetrics, s.Flush()...)
}
for _, t := range wm.localTimers {
finalMetrics = append(finalMetrics, t.Flush(s.interval, s.HistogramPercentiles, s.HistogramAggregates, false)...)
}
for _, status := range wm.localStatusChecks {
finalMetrics = append(finalMetrics, status.Flush()...)
}
// TODO (aditya) refactor this out so we don't
// have to call IsLocal again
if !s.IsLocal() {
// sets have no local parts, so if we're a local veneur, there's
// nothing to flush at all
for _, s := range wm.sets {
finalMetrics = append(finalMetrics, s.Flush()...)
}
// also do this for global counters
// global counters have no local parts, so if we're a local veneur,
// there's nothing to flush
for _, gc := range wm.globalCounters {
finalMetrics = append(finalMetrics, gc.Flush(s.interval)...)
}
// and global gauges
for _, gg := range wm.globalGauges {
finalMetrics = append(finalMetrics, gg.Flush()...)
}
for _, h := range wm.globalHistograms {
finalMetrics = append(finalMetrics, h.Flush(s.interval, s.HistogramPercentiles, s.HistogramAggregates, true)...)
}
for _, h := range wm.globalTimers {
finalMetrics = append(finalMetrics, h.Flush(s.interval, s.HistogramPercentiles, s.HistogramAggregates, true)...)
}
}
}
return finalMetrics
}
const flushTotalMetric = "worker.metrics_flushed_total"
// reportMetricsFlushCounts reports the counts of
// Counters, Gauges, LocalHistograms, LocalSets, and LocalTimers
// as metrics. These are shared by both global and local flush operations.
// It does *not* report the totalHistograms, totalSets, or totalTimers
// because those are only performed by the global veneur instance.
// It also does not report the total metrics posted, because on the local veneur,
// that should happen *after* the flush-forward operation.
func (s *Server) reportMetricsFlushCounts(ms metricsSummary) {
s.Statsd.Count(flushTotalMetric, int64(ms.totalCounters), []string{"metric_type:counter"}, 1.0)
s.Statsd.Count(flushTotalMetric, int64(ms.totalGauges), []string{"metric_type:gauge"}, 1.0)
s.Statsd.Count(flushTotalMetric, int64(ms.totalLocalHistograms), []string{"metric_type:local_histogram"}, 1.0)
s.Statsd.Count(flushTotalMetric, int64(ms.totalLocalSets), []string{"metric_type:local_set"}, 1.0)
s.Statsd.Count(flushTotalMetric, int64(ms.totalLocalTimers), []string{"metric_type:local_timer"}, 1.0)
s.Statsd.Count(flushTotalMetric, int64(ms.totalLocalStatusChecks), []string{"metric_type:status"}, 1.0)
}
// reportGlobalMetricsFlushCounts reports the counts of
// globalCounters, globalGauges, totalHistograms, totalSets, and totalTimers,
// which are the three metrics reported *only* by the global
// veneur instance.
func (s *Server) reportGlobalMetricsFlushCounts(ms metricsSummary) {
// we only report these lengths in FlushGlobal
// since if we're the global veneur instance responsible for flushing them
// this avoids double-counting problems where a local veneur reports
// histograms that it received, and then a global veneur reports them
// again
s.Statsd.Count(flushTotalMetric, int64(ms.totalGlobalCounters), []string{"metric_type:global_counter"}, 1.0)
s.Statsd.Count(flushTotalMetric, int64(ms.totalGlobalGauges), []string{"metric_type:global_gauge"}, 1.0)
s.Statsd.Count(flushTotalMetric, int64(ms.totalGlobalHistograms), []string{"metric_type:global_histogram"}, 1.0)
s.Statsd.Count(flushTotalMetric, int64(ms.totalGlobalTimers), []string{"metric_type:global_timers"}, 1.0)
s.Statsd.Count(flushTotalMetric, int64(ms.totalHistograms), []string{"metric_type:histogram"}, 1.0)
s.Statsd.Count(flushTotalMetric, int64(ms.totalSets), []string{"metric_type:set"}, 1.0)
s.Statsd.Count(flushTotalMetric, int64(ms.totalTimers), []string{"metric_type:timer"}, 1.0)
}
func (s *Server) flushForward(ctx context.Context, wms []WorkerMetrics) {
span, _ := trace.StartSpanFromContext(ctx, "")
defer span.ClientFinish(s.TraceClient)
jmLength := 0
for _, wm := range wms {
jmLength += len(wm.globalCounters)
jmLength += len(wm.globalGauges)
jmLength += len(wm.histograms)
jmLength += len(wm.sets)
jmLength += len(wm.timers)
}
jsonMetrics := make([]samplers.JSONMetric, 0, jmLength)
exportStart := time.Now()
for _, wm := range wms {
for _, count := range wm.globalCounters {
jm, err := count.Export()
if err != nil {
log.WithFields(logrus.Fields{
logrus.ErrorKey: err,
"type": "counter",
"name": count.Name,
}).Error("Could not export metric")
continue
}
jsonMetrics = append(jsonMetrics, jm)
}
for _, gauge := range wm.globalGauges {
jm, err := gauge.Export()
if err != nil {
log.WithFields(logrus.Fields{
logrus.ErrorKey: err,
"type": "gauge",
"name": gauge.Name,
}).Error("Could not export metric")
continue
}
jsonMetrics = append(jsonMetrics, jm)
}
for _, histo := range wm.histograms {
jm, err := histo.Export()
if err != nil {
log.WithFields(logrus.Fields{
logrus.ErrorKey: err,
"type": "histogram",
"name": histo.Name,
}).Error("Could not export metric")
continue
}
jsonMetrics = append(jsonMetrics, jm)
}
for _, set := range wm.sets {
jm, err := set.Export()
if err != nil {
log.WithFields(logrus.Fields{
logrus.ErrorKey: err,
"type": "set",
"name": set.Name,
}).Error("Could not export metric")
continue
}
jsonMetrics = append(jsonMetrics, jm)
}
for _, timer := range wm.timers {
jm, err := timer.Export()
if err != nil {
log.WithFields(logrus.Fields{
logrus.ErrorKey: err,
"type": "timer",
"name": timer.Name,
}).Error("Could not export metric")
continue
}
// the exporter doesn't know that these two are "different"
jm.Type = "timer"
jsonMetrics = append(jsonMetrics, jm)
}
}
s.Statsd.TimeInMilliseconds("forward.duration_ns", float64(time.Since(exportStart).Nanoseconds()), []string{"part:export"}, 1.0)
s.Statsd.Count("forward.post_metrics_total", int64(len(jsonMetrics)), nil, 1.0)
if len(jsonMetrics) == 0 {
log.Debug("Nothing to forward, skipping.")
return
}
// the error has already been logged (if there was one), so we only care
// about the success case
endpoint := fmt.Sprintf("%s/import", s.ForwardAddr)
if vhttp.PostHelper(span.Attach(ctx), s.HTTPClient, s.TraceClient, http.MethodPost, endpoint, jsonMetrics, "forward", true, nil, log) == nil {
log.WithFields(logrus.Fields{
"metrics": len(jsonMetrics),
"endpoint": endpoint,
"forwardAddr": s.ForwardAddr,
}).Info("Completed forward to upstream Veneur")
}
}
func (s *Server) flushTraces(ctx context.Context) {
s.ssfInternalMetrics.Range(func(keyI, valueI interface{}) bool {
key, ok := keyI.(string)
if !ok {
log.WithFields(logrus.Fields{
"key": keyI,
"type": reflect.TypeOf(keyI),
}).Error("received non-string key")
return true
}
value, ok := valueI.(*ssfServiceSpanMetrics)
if !ok {
log.WithFields(logrus.Fields{
"value": valueI,
"type": reflect.TypeOf(valueI),
}).Error("received non-struct value")
return true
}
tags := strings.Split(key, ",")
if len(tags) != 2 {
log.WithFields(logrus.Fields{
"key": key,
"length": len(tags),
}).Error("received key of incorrect format")
}
spansReceivedTotal := atomic.SwapInt64(&value.ssfSpansReceivedTotal, 0)
spansRootReceivedTotal := atomic.SwapInt64(&value.ssfRootSpansReceivedTotal, 0)
s.Statsd.Count("ssf.spans.received_total", spansReceivedTotal, tags, 1.0)
s.Statsd.Count("ssf.spans.root.received_total", spansRootReceivedTotal, append(tags, "veneurglobalonly:true"), 1.0)
return true
})
s.SpanWorker.Flush()
}
// forwardGRPC forwards all input metrics to a downstream Veneur, over gRPC.
func (s *Server) forwardGRPC(ctx context.Context, wms []WorkerMetrics) {
span, _ := trace.StartSpanFromContext(ctx, "")
span.SetTag("protocol", "grpc")
defer span.ClientFinish(s.TraceClient)
exportStart := time.Now()
// Collect all of the forwardable metrics from the various WorkerMetrics.
var metrics []*metricpb.Metric
for _, wm := range wms {
metrics = append(metrics, wm.ForwardableMetrics(s.TraceClient)...)
}
span.Add(
ssf.Timing("forward.duration_ns", time.Since(exportStart),
time.Nanosecond, map[string]string{"part": "export"}),
ssf.Gauge("forward.metrics_total", float32(len(metrics)), nil),
// Maintain compatibility with metrics used in HTTP-based forwarding
ssf.Count("forward.post_metrics_total", float32(len(metrics)), nil),
)
if len(metrics) == 0 {
log.Debug("Nothing to forward, skipping.")
return
}
entry := log.WithFields(logrus.Fields{
"metrics": len(metrics),
"destination": s.ForwardAddr,
"protocol": "grpc",
"grpcstate": s.grpcForwardConn.GetState().String(),
})
c := forwardrpc.NewForwardClient(s.grpcForwardConn)
grpcStart := time.Now()
_, err := c.SendMetrics(ctx, &forwardrpc.MetricList{Metrics: metrics})
if err != nil {
if ctx.Err() != nil {
// We exceeded the deadline of the flush context.
span.Add(ssf.Count("forward.error_total", 1, map[string]string{"cause": "deadline_exceeded"}))
} else if statErr, ok := status.FromError(err); ok &&
(statErr.Message() == "all SubConns are in TransientFailure" || statErr.Message() == "transport is closing") {
// We could check statErr.Code() == codes.Unavailable, but we don't know all of the cases that
// could return that code. These two particular cases are fairly safe and usually associated
// with connection rebalancing or host replacement, so we don't want them going to sentry.
span.Add(ssf.Count("forward.error_total", 1, map[string]string{"cause": "transient_unavailable"}))
} else {
span.Add(ssf.Count("forward.error_total", 1, map[string]string{"cause": "send"}))
entry.WithError(err).Error("Failed to forward to an upstream Veneur")
}
} else {
entry.Info("Completed forward to an upstream Veneur")
}
span.Add(
ssf.Timing("forward.duration_ns", time.Since(grpcStart), time.Nanosecond,
map[string]string{"part": "grpc"}),
ssf.Count("forward.error_total", 0, nil),
)
}