forked from simonmeister/motion-rcnn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
evaluator.py
266 lines (236 loc) · 11.5 KB
/
evaluator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Detection model evaluator.
This file provides a generic evaluation method that can be used to evaluate a
DetectionModel.
"""
import logging
import tensorflow as tf
from object_detection import eval_util
from object_detection.core import box_list
from object_detection.core import box_list_ops
from object_detection.core import prefetcher
from object_detection.core import standard_fields as fields
from object_detection.utils import ops
from object_detection.utils import motion_util
slim = tf.contrib.slim
EVAL_METRICS_FN_DICT = {
'pascal_voc_metrics': eval_util.evaluate_detection_results_pascal_voc
}
def _extract_prediction_tensors(model,
create_input_dict_fn,
ignore_groundtruth=False):
"""Restores the model in a tensorflow session.
Args:
model: model to perform predictions with.
create_input_dict_fn: function to create input tensor dictionaries.
ignore_groundtruth: whether groundtruth should be ignored.
Returns:
tensor_dict: A tensor dictionary with evaluations.
"""
input_dict = create_input_dict_fn()
prefetch_queue = prefetcher.prefetch(input_dict, capacity=500) # TODO
input_dict = prefetch_queue.dequeue()
original_image = tf.expand_dims(input_dict[fields.InputDataFields.image], 0)
next_image = input_dict.get(fields.InputDataFields.next_image)
image_input = tf.to_float(original_image)
if next_image is not None:
next_image = tf.to_float(next_image)
image_input = tf.concat([image_input, tf.expand_dims(next_image, 0)], 3)
depth = input_dict.get(fields.InputDataFields.groundtruth_depth)
next_depth = input_dict.get(fields.InputDataFields.groundtruth_next_depth)
image_input.set_shape([1, None, None, 6])
if depth is not None and next_depth is not None:
camera_intrinsics = input_dict[fields.InputDataFields.camera_intrinsics]
coords = motion_util.get_3D_coords(
tf.expand_dims(depth, 0), camera_intrinsics)
next_coords = motion_util.get_3D_coords(
tf.expand_dims(next_depth, 0), camera_intrinsics)
image_input = tf.concat([image_input, coords, next_coords], 3)
image_input.set_shape([1, None, None, 12])
preprocessed_image = model.preprocess(image_input)
prediction_dict = model.predict(preprocessed_image)
detections = model.postprocess(prediction_dict)
original_image_shape = tf.shape(original_image)
absolute_detection_boxlist = box_list_ops.to_absolute_coordinates(
box_list.BoxList(tf.squeeze(detections['detection_boxes'], axis=0)),
original_image_shape[1], original_image_shape[2])
label_id_offset = 1
tensor_dict = {
'original_image': original_image,
'image_id': input_dict[fields.InputDataFields.source_id],
'detection_boxes': absolute_detection_boxlist.get(),
'detection_scores': tf.squeeze(detections['detection_scores'], axis=0),
'detection_classes': (
tf.squeeze(detections['detection_classes'], axis=0) +
label_id_offset),
}
if 'detection_masks' in detections:
detection_masks = tf.squeeze(detections['detection_masks'],
axis=0)
detection_boxes = tf.squeeze(detections['detection_boxes'],
axis=0)
# TODO: This should be done in model's postprocess function ideally.
detection_masks_reframed = ops.reframe_box_masks_to_image_masks(
detection_masks,
detection_boxes,
original_image_shape[1], original_image_shape[2])
detection_masks_reframed = tf.to_float(tf.greater(detection_masks_reframed,
0.5))
tensor_dict['detection_masks'] = detection_masks_reframed
if 'detection_motions' in detections:
detection_motions = tf.squeeze(detections['detection_motions'],
axis=0)
detection_motions_with_matrices = (
motion_util.postprocess_detection_motions(detection_motions,
keep_logits=False))
tensor_dict['detection_motions'] = detection_motions_with_matrices
if 'camera_motion' in detections:
camera_motion_with_matrices = tf.squeeze(
motion_util.postprocess_camera_motion(detections['camera_motion']),
axis=0)
tensor_dict['camera_motion'] = camera_motion_with_matrices
tensor_dict['groundtruth_camera_motion'] = input_dict[
fields.InputDataFields.groundtruth_camera_motion]
# load groundtruth fields into tensor_dict
if not ignore_groundtruth:
normalized_gt_boxlist = box_list.BoxList(
input_dict[fields.InputDataFields.groundtruth_boxes])
gt_boxlist = box_list_ops.scale(normalized_gt_boxlist,
tf.shape(original_image)[1],
tf.shape(original_image)[2])
groundtruth_boxes = gt_boxlist.get()
groundtruth_classes = input_dict[fields.InputDataFields.groundtruth_classes]
tensor_dict['groundtruth_boxes'] = groundtruth_boxes
tensor_dict['groundtruth_classes'] = groundtruth_classes
tensor_dict['area'] = input_dict[fields.InputDataFields.groundtruth_area]
tensor_dict['is_crowd'] = input_dict[
fields.InputDataFields.groundtruth_is_crowd]
tensor_dict['difficult'] = input_dict[
fields.InputDataFields.groundtruth_difficult]
if 'detection_masks' in tensor_dict:
tensor_dict['groundtruth_instance_masks'] = input_dict[
fields.InputDataFields.groundtruth_instance_masks]
if 'detection_motions' in tensor_dict:
tensor_dict['groundtruth_camera_motion'] = input_dict[
fields.InputDataFields.groundtruth_camera_motion]
tensor_dict['groundtruth_instance_motions'] = input_dict[
fields.InputDataFields.groundtruth_instance_motions]
tensor_dict['camera_intrinsics'] = input_dict[
fields.InputDataFields.camera_intrinsics]
if fields.InputDataFields.groundtruth_flow in input_dict:
tensor_dict['groundtruth_flow'] = input_dict[
fields.InputDataFields.groundtruth_flow]
if not 'depth' in tensor_dict:
tensor_dict['depth'] = input_dict[
fields.InputDataFields.groundtruth_depth]
else:
tensor_dict['groundtruth_depth'] = input_dict[
fields.InputDataFields.groundtruth_depth]
return tensor_dict
def evaluate(create_input_dict_fn, create_model_fn, eval_config, categories,
checkpoint_dir, eval_dir):
"""Evaluation function for detection models.
Args:
create_input_dict_fn: a function to create a tensor input dictionary.
create_model_fn: a function that creates a DetectionModel.
eval_config: a eval_pb2.EvalConfig protobuf.
categories: a list of category dictionaries. Each dict in the list should
have an integer 'id' field and string 'name' field.
checkpoint_dir: directory to load the checkpoints to evaluate from.
eval_dir: directory to write evaluation metrics summary to.
"""
model = create_model_fn()
if eval_config.ignore_groundtruth and not eval_config.export_path:
logging.fatal('If ignore_groundtruth=True then an export_path is '
'required. Aborting!!!')
tensor_dict = _extract_prediction_tensors(
model=model,
create_input_dict_fn=create_input_dict_fn,
ignore_groundtruth=eval_config.ignore_groundtruth)
def _process_batch(tensor_dict, sess, batch_index, counters, update_op):
"""Evaluates tensors in tensor_dict, visualizing the first K examples.
This function calls sess.run on tensor_dict, evaluating the original_image
tensor only on the first K examples and visualizing detections overlaid
on this original_image.
Args:
tensor_dict: a dictionary of tensors
sess: tensorflow session
batch_index: the index of the batch amongst all batches in the run.
counters: a dictionary holding 'success' and 'skipped' fields which can
be updated to keep track of number of successful and failed runs,
respectively. If these fields are not updated, then the success/skipped
counter values shown at the end of evaluation will be incorrect.
update_op: An update op that has to be run along with output tensors. For
example this could be an op to compute statistics for slim metrics.
Returns:
result_dict: a dictionary of numpy arrays
"""
if batch_index >= eval_config.num_visualizations:
if 'original_image' in tensor_dict:
tensor_dict = {k: v for (k, v) in tensor_dict.items()
if k != 'original_image'}
try:
(result_dict, _) = sess.run([tensor_dict, update_op])
counters['success'] += 1
except tf.errors.InvalidArgumentError:
logging.info('Skipping image')
counters['skipped'] += 1
return {}
global_step = tf.train.global_step(sess, slim.get_global_step())
if batch_index < eval_config.num_visualizations:
tag = 'image-{}'.format(batch_index)
eval_util.visualize_detection_results(
result_dict, tag, global_step, categories=categories,
summary_dir=eval_dir,
export_dir=eval_config.visualization_export_dir,
show_groundtruth=eval_config.visualization_export_dir,
sess=sess)
return result_dict
def _process_aggregated_results(result_lists, sess):
eval_metric_fn_key = eval_config.metrics_set
if eval_metric_fn_key not in EVAL_METRICS_FN_DICT:
raise ValueError('Metric not found: {}'.format(eval_metric_fn_key))
return EVAL_METRICS_FN_DICT[eval_metric_fn_key](result_lists,
categories=categories,
sess=sess)
variables_to_restore = tf.global_variables()
global_step = slim.get_or_create_global_step()
variables_to_restore.append(global_step)
if eval_config.use_moving_averages:
variable_averages = tf.train.ExponentialMovingAverage(0.0)
variables_to_restore = variable_averages.variables_to_restore()
saver = tf.train.Saver(variables_to_restore)
def _restore_latest_checkpoint(sess):
latest_checkpoint = tf.train.latest_checkpoint(checkpoint_dir)
saver.restore(sess, latest_checkpoint)
eval_util.repeated_checkpoint_run(
tensor_dict=tensor_dict,
update_op=tf.no_op(),
summary_dir=eval_dir,
aggregated_result_processor=_process_aggregated_results,
batch_processor=_process_batch,
checkpoint_dirs=[checkpoint_dir],
variables_to_restore=None,
restore_fn=_restore_latest_checkpoint,
num_batches=eval_config.num_examples,
eval_interval_secs=eval_config.eval_interval_secs,
max_number_of_evaluations=(
1 if eval_config.ignore_groundtruth else
eval_config.max_evals if eval_config.max_evals else
None),
master=eval_config.eval_master,
save_graph=eval_config.save_graph,
save_graph_dir=(eval_dir if eval_config.save_graph else ''))