-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrainer.py
285 lines (235 loc) · 10.6 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
"""
Part of the SafeDroid v2.0 FrameWork.
Author : Arygriou Marios
Year : 2017
The framework is distributed under the GNU General Public License v3.0
"""
import vectors
from vectors import Applications, AppToApi, API
from feature_vectors import superFeatureVector
import pandas as pd
import numpy as np
import os
from sklearn import preprocessing
import cPickle as pickle
from joblib import Parallel, delayed
import multiprocessing
from data import Data, Config
from timeit import default_timer as timer
from sklearn.neighbors import KNeighborsClassifier, RadiusNeighborsClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.neural_network import MLPClassifier
from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn import metrics
from sklearn.metrics import f1_score
import pylab as pl
from matplotlib.colors import ListedColormap
from sklearn import svm
def getFeatureVector(sd):
return superFeatureVector(sd)
def f1Score(y_true, y_pred):
score = {}
try:
score['macro'] = f1_score(y_true, y_pred, average='macro')
score['micro'] = f1_score(y_true, y_pred, average='micro')
score['weighted'] = f1_score(y_true, y_pred, average='weighted')
except UndefinedMetricWarning: # division by 0
return dict(macro=0, micro=0, weighted=0)
return score
def calculateValues(confusion, length):
try:
TP = confusion[1, 1]/float(length)
TN = confusion[0, 0]/float(length)
FP = confusion[0, 1]/float(length)
FN = confusion[1, 0]/float(length)
return dict(tp=TP, tn=TN, fp=FP, fn=FN)
except:
return [-1, -1, -1, -1]
def KNN(featureVector, sd, tune, ts):
results = []
_target_counter, _ratio_counter, i = 0, 0, 0
for matrix in featureVector: # len of feature vectors = number of threshold filters
for vector in matrix: # len of matrix = number of samples defined by reduce size
X = vector['vector']
y = sd.target[_target_counter]
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=ts, random_state=4)
try:
knn = KNeighborsClassifier(
n_neighbors=tune['n_neighbors'], weights=tune['weights'], algorithm=tune['algorithm'], n_jobs=multiprocessing.cpu_count())
knn.fit(X_train, y_train)
y_pred = knn.predict(X_test)
accuracy = metrics.accuracy_score(y_test, y_pred)
confusion = metrics.confusion_matrix(y_test, y_pred)
fbk = calculateValues(metrics.confusion_matrix(
y_test, y_pred), len(y_test))
f1 = f1Score(y_test, y_pred)
results.append(dict(
accuracy=accuracy, supl_info=vector['info'], f1=f1, confusion_matrix=confusion, tune=tune, fbk=fbk, fv=X.shape[1]))
except ValueError:
continue
_target_counter += 1
_target_counter = 0
_ratio_counter += 1
return results
def SupportVectorMachine(featureVector, sd, tune, ts):
results = []
_target_counter, _ratio_counter, i = 0, 0, 0
for matrix in featureVector: # len of feature vectors = number of threshold filters
for vector in matrix: # len of matrix = number of samples defined by reduce size
X = vector['vector']
y = sd.target[_target_counter]
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=ts, random_state=4)
try:
if tune['kernel'] is 'rbf':
knn = svm.SVC(
kernel=tune['kernel'], class_weight='balanced', gamma=tune['gamma'], C=tune['C'])
else:
knn = svm.SVC(
kernel=tune['kernel'], class_weight='balanced', C=tune['C'])
knn.fit(X_train, y_train)
y_pred = knn.predict(X_test)
accuracy = metrics.accuracy_score(y_test, y_pred)
confusion = metrics.confusion_matrix(y_test, y_pred)
fbk = calculateValues(metrics.confusion_matrix(
y_test, y_pred), len(y_test))
f1 = f1Score(y_test, y_pred)
results.append(dict(
accuracy=accuracy, supl_info=vector['info'], f1=f1, confusion_matrix=confusion, tune=tune, fbk=fbk, fv=X.shape[1]))
except ValueError:
continue
_target_counter += 1
_target_counter = 0
_ratio_counter += 1
return results
def DTreeClassifier(featureVector, sd, tune, ts):
results = []
_target_counter, _ratio_counter, i = 0, 0, 0
for matrix in featureVector:
for vector in matrix:
X = vector['vector']
y = sd.target[_target_counter]
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=ts, random_state=4)
try:
knn = DecisionTreeClassifier(min_weight_fraction_leaf=tune['min_weight_fraction_leaf'], class_weight=tune[
'class_weight'], min_samples_split=tune['min_samples_split'], max_depth=tune['max_depth'])
knn.fit(X_train, y_train)
y_pred = knn.predict(X_test)
accuracy = metrics.accuracy_score(y_test, y_pred)
confusion = metrics.confusion_matrix(y_test, y_pred)
fbk = calculateValues(metrics.confusion_matrix(
y_test, y_pred), len(y_test))
f1 = f1Score(y_test, y_pred)
results.append(dict(
accuracy=accuracy, supl_info=vector['info'], f1=f1, confusion_matrix=confusion, tune=tune, fbk=fbk, fv=X.shape[1]))
except ValueError, TypeError:
continue
_target_counter += 1
_target_counter = 0
_ratio_counter += 1
return results
def RForestClassifier(featureVector, sd, tune, ts):
results = []
_target_counter, _ratio_counter, i = 0, 0, 0
for matrix in featureVector: # len of feature vectors = number of threshold filters
for vector in matrix: # len of matrix = number of samples defined by reduce size
X = vector['vector']
y = sd.target[_target_counter]
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=ts, random_state=4)
try:
knn = RandomForestClassifier(n_estimators=tune['n_estimators'], min_samples_split=tune['min_samples_split'],
oob_score=tune['oob_score'], class_weight=tune['class_weight'], n_jobs=multiprocessing.cpu_count())
knn.fit(X_train, y_train)
y_pred = knn.predict(X_test)
accuracy = metrics.accuracy_score(y_test, y_pred)
confusion = metrics.confusion_matrix(y_test, y_pred)
fbk = calculateValues(metrics.confusion_matrix(
y_test, y_pred), len(y_test))
f1 = f1Score(y_test, y_pred)
results.append(dict(
accuracy=accuracy, supl_info=vector['info'], f1=f1, confusion_matrix=confusion, tune=tune, fbk=fbk, fv=X.shape[1]))
except ValueError:
continue
_target_counter += 1
_target_counter = 0
_ratio_counter += 1
return results
def MLP(featureVector, sd, tune, ts):
results = []
_target_counter = 0
_ratio_counter = 0
config = Config('model_training.config')
i = 0
for matrix in featureVector:
for vector in matrix:
X = vector['vector']
y = sd.target[_target_counter]
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=ts, random_state=4)
try:
if tune['solver'] is 'sgd':
knn = MLPClassifier(
solver=tune['solver'], activation=tune['activation'], learning_rate=tune['learning_rate'])
else:
knn = MLPClassifier(
solver=tune['solver'], activation=tune['activation'])
knn.fit(X_train, y_train)
y_pred = knn.predict(X_test)
accuracy = metrics.accuracy_score(y_test, y_pred)
confusion = metrics.confusion_matrix(y_test, y_pred)
fbk = calculateValues(metrics.confusion_matrix(
y_test, y_pred), len(y_test))
f1 = f1Score(y_test, y_pred)
results.append(dict(
accuracy=accuracy, supl_info=vector['info'], f1=f1, confusion_matrix=confusion, tune=tune, fbk=fbk, fv=X.shape[1]))
except ValueError:
continue
_target_counter += 1
_target_counter = 0
_ratio_counter += 1
return results
def AdaBoost(featureVector, sd, tune, ts):
results = []
_target_counter = 0
_ratio_counter = 0
config = Config('model_training.config')
i = 0
for matrix in featureVector:
for vector in matrix:
X = vector['vector']
y = sd.target[_target_counter]
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=ts, random_state=4)
try:
knn = AdaBoostClassifier(
n_estimators=tune['n_estimators'], algorithm=tune['algorithm'])
knn.fit(X_train, y_train)
y_pred = knn.predict(X_test)
accuracy = metrics.accuracy_score(y_test, y_pred)
confusion = metrics.confusion_matrix(y_test, y_pred)
fbk = calculateValues(metrics.confusion_matrix(
y_test, y_pred), len(y_test))
f1 = f1Score(y_test, y_pred)
results.append(dict(
accuracy=accuracy, supl_info=vector['info'], f1=f1, confusion_matrix=confusion, tune=tune, fbk=fbk, fv=X.shape[1]))
except ValueError:
continue
_target_counter += 1
_target_counter = 0
_ratio_counter += 1
return results
def trainModel(featureVector, sd, classifier, tune):
results = {}
_dispatcher = {'KNeighbor': KNN, # ok
'SVM': SupportVectorMachine, # ok
'DTree': DTreeClassifier, # ok
'RForest': RForestClassifier, # ok
'MLP': MLP,
'ADA': AdaBoost
}
return _dispatcher[classifier](featureVector, sd, tune, 0.4)