-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathframeToD3.r
66 lines (52 loc) · 2.53 KB
/
frameToD3.r
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
load("sampleData")
#My sample data is 1000 rows, with the first column a unique id, followed by 100 columns of data variables
groupVars <- c("path")
dataVars <- colnames(dt)[!colnames(dt) %in% groupVars]
outfile
frameToJSON <- function(dt,groupVars,dataVars,outfile){
#packages we will need:
require(data.table)
require(RJSONIO)
#Here you may want to sort by colSums() to keep only the most relevant variables.
#calculate the correlation matrix
t <- cor(dt[,c(!colnames(dt) %in% groupVars),with=F])
#calculate the hierarchical cluster structure from the correlation scores
hc <- hclust(dist(t), "ward")
#take a look at what your strucutre:
plot(hc)
#now we split the data based on membership structure. We will take four levels:
#(basically this means we will calculate which group each variable belongs in for different levels of the tree strucutre)
memb2 <- as.character(cutree(hc, k = 2))
memb6 <- as.character(cutree(hc, k = 6))
memb15 <- as.character(cutree(hc, k = 15))
memb40 <- as.character(cutree(hc, k = 40))
#Now put this information into a table, together with the labels and the order in which they should appear:
b=data.table(memb2,memb6,memb15,memb40,label=hc$labels,order=hc$order)
#We might want to know the size of each node. Let's add that
b$size <- colSums(dt[,c(dataVars),with=F])
#sort the data so it alligns with the structure calculated using hclust()
setkey(b,order)
#drop the order variable:
b[,order:=NULL]
#we define a function which will create a nested list in JSON format:
#From here: http://stackoverflow.com/questions/12818864/how-to-write-to-json-with-children-from-r
makeList<-function(x){
if(ncol(x)>2){
listSplit<-split(x[-1],x[1],drop=T)
lapply(names(listSplit),function(y){list(name=y,imports=makeList(listSplit[[y]]))})
}else{
lapply(seq(nrow(x[1])),function(y){list(name=x[,1][y],size=x[,2][y])})
}
}
#This will not work on a data.table
b <- data.frame(b)
out <- makeList(b)
#Have a look at the structure this creates:
print (head(out))
#Basically we have made a list of lists containing the information from the tree diagram.
#Finally we put everythin into a list, convert this to json format and save it as data.json
jsonOut<-toJSON(list(name="Centre",children=makeList(b)))
#We use the cat function here, because in some cases you may want to add separators, or a prefix and suffix to make the formatting just right
cat(jsonOut,file=outfile)
}
frameToJSON(dt,groupVars,dataVars,outfile="data.json")