forked from explosion/spaCy
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_models.py
301 lines (259 loc) · 9.37 KB
/
test_models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
from typing import List
import numpy
import pytest
from numpy.testing import assert_array_almost_equal, assert_array_equal
from thinc.api import (
Adam,
Logistic,
Ragged,
Relu,
chain,
fix_random_seed,
reduce_mean,
set_dropout_rate,
)
from spacy.lang.en import English
from spacy.lang.en.examples import sentences as EN_SENTENCES
from spacy.ml.extract_spans import _get_span_indices, extract_spans
from spacy.ml.models import (
MaxoutWindowEncoder,
MultiHashEmbed,
build_bow_text_classifier,
build_simple_cnn_text_classifier,
build_spancat_model,
build_Tok2Vec_model,
)
from spacy.ml.staticvectors import StaticVectors
from spacy.util import registry
def get_textcat_bow_kwargs():
return {
"exclusive_classes": True,
"ngram_size": 1,
"no_output_layer": False,
"nO": 34,
}
def get_textcat_cnn_kwargs():
return {"tok2vec": make_test_tok2vec(), "exclusive_classes": False, "nO": 13}
def get_all_params(model):
params = []
for node in model.walk():
for name in node.param_names:
params.append(node.get_param(name).ravel())
return node.ops.xp.concatenate(params)
def get_docs():
nlp = English()
return list(nlp.pipe(EN_SENTENCES + [" ".join(EN_SENTENCES)]))
def get_gradient(model, Y):
if isinstance(Y, model.ops.xp.ndarray):
dY = model.ops.alloc(Y.shape, dtype=Y.dtype)
dY += model.ops.xp.random.uniform(-1.0, 1.0, Y.shape)
return dY
elif isinstance(Y, List):
return [get_gradient(model, y) for y in Y]
else:
raise ValueError(f"Could not get gradient for type {type(Y)}")
def get_tok2vec_kwargs():
# This actually creates models, so seems best to put it in a function.
return {
"embed": MultiHashEmbed(
width=32,
rows=[500, 500, 500],
attrs=["NORM", "PREFIX", "SHAPE"],
include_static_vectors=False,
),
"encode": MaxoutWindowEncoder(
width=32, depth=2, maxout_pieces=2, window_size=1
),
}
def make_test_tok2vec():
return build_Tok2Vec_model(**get_tok2vec_kwargs())
def test_multi_hash_embed():
embed = MultiHashEmbed(
width=32,
rows=[500, 500, 500],
attrs=["NORM", "PREFIX", "SHAPE"],
include_static_vectors=False,
)
hash_embeds = [node for node in embed.walk() if node.name == "hashembed"]
assert len(hash_embeds) == 3
# Check they look at different columns.
assert list(sorted(he.attrs["column"] for he in hash_embeds)) == [0, 1, 2]
# Check they use different seeds
assert len(set(he.attrs["seed"] for he in hash_embeds)) == 3
# Check they all have the same number of rows
assert [he.get_dim("nV") for he in hash_embeds] == [500, 500, 500]
# Now try with different row factors
embed = MultiHashEmbed(
width=32,
rows=[1000, 50, 250],
attrs=["NORM", "PREFIX", "SHAPE"],
include_static_vectors=False,
)
hash_embeds = [node for node in embed.walk() if node.name == "hashembed"]
assert [he.get_dim("nV") for he in hash_embeds] == [1000, 50, 250]
@pytest.mark.parametrize(
"seed,model_func,kwargs",
[
(0, build_Tok2Vec_model, get_tok2vec_kwargs()),
(0, build_bow_text_classifier, get_textcat_bow_kwargs()),
(0, build_simple_cnn_text_classifier, get_textcat_cnn_kwargs()),
],
)
def test_models_initialize_consistently(seed, model_func, kwargs):
fix_random_seed(seed)
model1 = model_func(**kwargs)
model1.initialize()
fix_random_seed(seed)
model2 = model_func(**kwargs)
model2.initialize()
params1 = get_all_params(model1)
params2 = get_all_params(model2)
assert_array_equal(model1.ops.to_numpy(params1), model2.ops.to_numpy(params2))
@pytest.mark.parametrize(
"seed,model_func,kwargs,get_X",
[
(0, build_Tok2Vec_model, get_tok2vec_kwargs(), get_docs),
(0, build_bow_text_classifier, get_textcat_bow_kwargs(), get_docs),
(0, build_simple_cnn_text_classifier, get_textcat_cnn_kwargs(), get_docs),
],
)
def test_models_predict_consistently(seed, model_func, kwargs, get_X):
fix_random_seed(seed)
model1 = model_func(**kwargs).initialize()
Y1 = model1.predict(get_X())
fix_random_seed(seed)
model2 = model_func(**kwargs).initialize()
Y2 = model2.predict(get_X())
if model1.has_ref("tok2vec"):
tok2vec1 = model1.get_ref("tok2vec").predict(get_X())
tok2vec2 = model2.get_ref("tok2vec").predict(get_X())
for i in range(len(tok2vec1)):
for j in range(len(tok2vec1[i])):
assert_array_equal(
numpy.asarray(model1.ops.to_numpy(tok2vec1[i][j])),
numpy.asarray(model2.ops.to_numpy(tok2vec2[i][j])),
)
try:
Y1 = model1.ops.to_numpy(Y1)
Y2 = model2.ops.to_numpy(Y2)
except Exception:
pass
if isinstance(Y1, numpy.ndarray):
assert_array_equal(Y1, Y2)
elif isinstance(Y1, List):
assert len(Y1) == len(Y2)
for y1, y2 in zip(Y1, Y2):
try:
y1 = model1.ops.to_numpy(y1)
y2 = model2.ops.to_numpy(y2)
except Exception:
pass
assert_array_equal(y1, y2)
else:
raise ValueError(f"Could not compare type {type(Y1)}")
@pytest.mark.parametrize(
"seed,dropout,model_func,kwargs,get_X",
[
(0, 0.2, build_Tok2Vec_model, get_tok2vec_kwargs(), get_docs),
(0, 0.2, build_bow_text_classifier, get_textcat_bow_kwargs(), get_docs),
(0, 0.2, build_simple_cnn_text_classifier, get_textcat_cnn_kwargs(), get_docs),
],
)
def test_models_update_consistently(seed, dropout, model_func, kwargs, get_X):
def get_updated_model():
fix_random_seed(seed)
optimizer = Adam(0.001)
model = model_func(**kwargs).initialize()
initial_params = get_all_params(model)
set_dropout_rate(model, dropout)
for _ in range(5):
Y, get_dX = model.begin_update(get_X())
dY = get_gradient(model, Y)
get_dX(dY)
model.finish_update(optimizer)
updated_params = get_all_params(model)
with pytest.raises(AssertionError):
assert_array_equal(
model.ops.to_numpy(initial_params), model.ops.to_numpy(updated_params)
)
return model
model1 = get_updated_model()
model2 = get_updated_model()
assert_array_almost_equal(
model1.ops.to_numpy(get_all_params(model1)),
model2.ops.to_numpy(get_all_params(model2)),
decimal=5,
)
@pytest.mark.parametrize("model_func,kwargs", [(StaticVectors, {"nO": 128, "nM": 300})])
def test_empty_docs(model_func, kwargs):
nlp = English()
model = model_func(**kwargs).initialize()
# Test the layer can be called successfully with 0, 1 and 2 empty docs.
for n_docs in range(3):
docs = [nlp("") for _ in range(n_docs)]
# Test predict
model.predict(docs)
# Test backprop
output, backprop = model.begin_update(docs)
backprop(output)
def test_init_extract_spans():
extract_spans().initialize()
def test_extract_spans_span_indices():
model = extract_spans().initialize()
spans = Ragged(
model.ops.asarray([[0, 3], [2, 3], [5, 7]], dtype="i"),
model.ops.asarray([2, 1], dtype="i"),
)
x_lengths = model.ops.asarray([5, 10], dtype="i")
indices = _get_span_indices(model.ops, spans, x_lengths)
assert list(indices) == [0, 1, 2, 2, 10, 11]
def test_extract_spans_forward_backward():
model = extract_spans().initialize()
X = Ragged(model.ops.alloc2f(15, 4), model.ops.asarray([5, 10], dtype="i"))
spans = Ragged(
model.ops.asarray([[0, 3], [2, 3], [5, 7]], dtype="i"),
model.ops.asarray([2, 1], dtype="i"),
)
Y, backprop = model.begin_update((X, spans))
assert list(Y.lengths) == [3, 1, 2]
assert Y.dataXd.shape == (6, 4)
dX, spans2 = backprop(Y)
assert spans2 is spans
assert dX.dataXd.shape == X.dataXd.shape
assert list(dX.lengths) == list(X.lengths)
def test_spancat_model_init():
model = build_spancat_model(
build_Tok2Vec_model(**get_tok2vec_kwargs()), reduce_mean(), Logistic()
)
model.initialize()
def test_spancat_model_forward_backward(nO=5):
tok2vec = build_Tok2Vec_model(**get_tok2vec_kwargs())
docs = get_docs()
spans_list = []
lengths = []
for doc in docs:
spans_list.append(doc[:2])
spans_list.append(doc[1:4])
lengths.append(2)
spans = Ragged(
tok2vec.ops.asarray([[s.start, s.end] for s in spans_list], dtype="i"),
tok2vec.ops.asarray(lengths, dtype="i"),
)
model = build_spancat_model(
tok2vec, reduce_mean(), chain(Relu(nO=nO), Logistic())
).initialize(X=(docs, spans))
Y, backprop = model((docs, spans), is_train=True)
assert Y.shape == (spans.dataXd.shape[0], nO)
backprop(Y)
def test_textcat_reduce_invalid_args():
textcat_reduce = registry.architectures.get("spacy.TextCatReduce.v1")
tok2vec = make_test_tok2vec()
with pytest.raises(ValueError, match=r"must be used with at least one reduction"):
textcat_reduce(
tok2vec=tok2vec,
exclusive_classes=False,
use_reduce_first=False,
use_reduce_last=False,
use_reduce_max=False,
use_reduce_mean=False,
)