@inproceedings{lin2017focal,
title={Focal loss for dense object detection},
author={Lin, Tsung-Yi and Goyal, Priya and Girshick, Ross and He, Kaiming and Doll{\'a}r, Piotr},
booktitle={Proceedings of the IEEE international conference on computer vision},
year={2017}
}
Backbone | Style | Lr schd | Mem (GB) | Inf time (fps) | box AP | Config | Download |
---|---|---|---|---|---|---|---|
R-50-FPN | caffe | 1x | 3.5 | 18.6 | 36.3 | config | model | log |
R-50-FPN | pytorch | 1x | 3.8 | 19.0 | 36.5 | config | model | log |
R-50-FPN | pytorch | 2x | - | - | 37.4 | config | model | log |
R-101-FPN | caffe | 1x | 5.5 | 14.7 | 38.5 | config | model | log |
R-101-FPN | pytorch | 1x | 5.7 | 15.0 | 38.5 | config | model | log |
R-101-FPN | pytorch | 2x | - | - | 38.9 | config | model | log |
X-101-32x4d-FPN | pytorch | 1x | 7.0 | 12.1 | 39.9 | config | model | log |
X-101-32x4d-FPN | pytorch | 2x | - | - | 40.1 | config | model | log |
X-101-64x4d-FPN | pytorch | 1x | 10.0 | 8.7 | 41.0 | config | model | log |
X-101-64x4d-FPN | pytorch | 2x | - | - | 40.8 | config | model | log |
We also train some models with longer schedules and multi-scale training. The users could finetune them for downstream tasks.
Backbone | Style | Lr schd | Mem (GB) | box AP | Config | Download |
---|---|---|---|---|---|---|
R-50-FPN | pytorch | 3x | 3.5 | 39.5 | config | model | log |
R-101-FPN | caffe | 3x | 5.4 | 40.7 | config | model | log |
R-101-FPN | pytorch | 3x | 5.4 | 41 | config | model | log |
X-101-64x4d-FPN | pytorch | 3x | 9.8 | 41.6 | config | model | log |