-
Notifications
You must be signed in to change notification settings - Fork 48
/
Copy pathdocument_summarizer_training_testing.py
286 lines (219 loc) · 12.8 KB
/
document_summarizer_training_testing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
####################################
# Author: Shashi Narayan
# Date: September 2016
# Project: Document Summarization
# H2020 Summa Project
# Comments: Jan 2017
# Improved for Reinforcement Learning
####################################
"""
Document Summarization System
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
import os
import random
import sys
import time
import numpy as np
import tensorflow as tf
from reward_utils import Reward_Generator
from data_utils import DataProcessor
from my_flags import FLAGS
from my_model import MY_Model
######################## Batch Testing a model on some dataset ############
def batch_predict_with_a_model(data, model, session=None):
data_logits = []
data_labels = []
data_weights = []
step = 1
while (step * FLAGS.batch_size) <= len(data.fileindices):
# Get batch data as Numpy Arrays : Without shuffling
batch_docnames, batch_docs, batch_label, batch_weight, batch_oracle_multiple, batch_reward_multiple = data.get_batch(((step-1)*FLAGS.batch_size), (step * FLAGS.batch_size))
batch_logits = session.run(model.logits, feed_dict={model.document_placeholder: batch_docs})
data_logits.append(batch_logits)
data_labels.append(batch_label)
data_weights.append(batch_weight)
# Increase step
step += 1
# Check if any data left
if (len(data.fileindices) > ((step-1)*FLAGS.batch_size)):
# Get last batch as Numpy Arrays
batch_docnames, batch_docs, batch_label, batch_weight, batch_oracle_multiple, batch_reward_multiple = data.get_batch(((step-1)*FLAGS.batch_size), len(data.fileindices))
batch_logits = session.run(model.logits, feed_dict={model.document_placeholder: batch_docs})
data_logits.append(batch_logits)
data_labels.append(batch_label)
data_weights.append(batch_weight)
# print(data_logits)
# Convert list to tensors
data_logits = tf.concat(0, data_logits)
data_lables = tf.concat(0, data_labels)
data_weights = tf.concat(0, data_weights)
# print(data_logits,data_lables,data_weights)
return data_logits, data_lables, data_weights
######################## Training Mode ###########################
def train():
"""
Training Mode: Create a new model and train the network
"""
# Training: use the tf default graph
with tf.Graph().as_default() and tf.device(FLAGS.use_gpu):
config = tf.ConfigProto(allow_soft_placement = True)
# Start a session
with tf.Session(config = config) as sess:
### Prepare data for training
print("Prepare vocab dict and read pretrained word embeddings ...")
vocab_dict, word_embedding_array = DataProcessor().prepare_vocab_embeddingdict()
# vocab_dict contains _PAD and _UNK but not word_embedding_array
print("Prepare training data ...")
train_data = DataProcessor().prepare_news_data(vocab_dict, data_type="training")
print("Prepare validation data ...")
validation_data = DataProcessor().prepare_news_data(vocab_dict, data_type="validation")
print("Prepare ROUGE reward generator ...")
rouge_generator = Reward_Generator()
# Create Model with various operations
model = MY_Model(sess, len(vocab_dict)-2)
# Start training with some pretrained model
start_epoch = 1
# selected_modelpath = FLAGS.train_dir+"/model.ckpt.epoch-"+str(start_epoch-1)
# if not (os.path.isfile(selected_modelpath)):
# print("Model not found in checkpoint folder.")
# exit(0)
# # Reload saved model and test
# print("Reading model parameters from %s" % selected_modelpath)
# model.saver.restore(sess, selected_modelpath)
# print("Model loaded.")
# Initialize word embedding before training
print("Initialize word embedding vocabulary with pretrained embeddings ...")
sess.run(model.vocab_embed_variable.assign(word_embedding_array))
########### Start (No Mixer) Training : Reinforcement learning ################
# Reward aware training as part of Reward weighted CE ,
# No Curriculam learning: No annealing, consider full document like in MRT
# Multiple Samples (include gold sample), No future reward, Similar to MRT
# During training does not use PYROUGE to avoid multiple file rewritings
# Approximate MRT with multiple pre-estimated oracle samples
# June 2017: Use Single sample from multiple oracles
###############################################################################
print("Start Reinforcement Training (single rollout from largest prob mass) ...")
for epoch in range(start_epoch, FLAGS.train_epoch_wce + 1):
print("MRT: Epoch "+str(epoch))
print("MRT: Epoch "+str(epoch)+" : Reshuffle training document indices")
train_data.shuffle_fileindices()
print("MRT: Epoch "+str(epoch)+" : Restore Rouge Dict")
rouge_generator.restore_rouge_dict()
# Start Batch Training
step = 1
while (step * FLAGS.batch_size) <= len(train_data.fileindices):
# Get batch data as Numpy Arrays
batch_docnames, batch_docs, batch_label, batch_weight, batch_oracle_multiple, batch_reward_multiple = train_data.get_batch(((step-1)*FLAGS.batch_size),
(step * FLAGS.batch_size))
# print(batch_docnames)
# print(batch_label[0])
# print(batch_weight[0])
# print(batch_oracle_multiple[0])
# print(batch_reward_multiple[0])
# exit(0)
# Print the progress
if (step % FLAGS.training_checkpoint) == 0:
ce_loss_val, ce_loss_sum, acc_val, acc_sum = sess.run([model.rewardweighted_cross_entropy_loss_multisample, model.rewardweighted_ce_multisample_loss_summary,
model.accuracy, model.taccuracy_summary],
feed_dict={model.document_placeholder: batch_docs,
model.predicted_multisample_label_placeholder: batch_oracle_multiple,
model.actual_reward_multisample_placeholder: batch_reward_multiple,
model.label_placeholder: batch_label,
model.weight_placeholder: batch_weight})
# Print Summary to Tensor Board
model.summary_writer.add_summary(ce_loss_sum, ((epoch-1)*len(train_data.fileindices)+ step*FLAGS.batch_size))
model.summary_writer.add_summary(acc_sum, ((epoch-1)*len(train_data.fileindices)+step*FLAGS.batch_size))
print("MRT: Epoch "+str(epoch)+" : Covered " + str(step*FLAGS.batch_size)+"/"+str(len(train_data.fileindices)) +
" : Minibatch Reward Weighted Multisample CE Loss= {:.6f}".format(ce_loss_val) + " : Minibatch training accuracy= {:.6f}".format(acc_val))
# Run optimizer: optimize policy network
sess.run([model.train_op_policynet_expreward], feed_dict={model.document_placeholder: batch_docs,
model.predicted_multisample_label_placeholder: batch_oracle_multiple,
model.actual_reward_multisample_placeholder: batch_reward_multiple,
model.weight_placeholder: batch_weight})
# Increase step
step += 1
# if step == 20:
# break
# Save Model
print("MRT: Epoch "+str(epoch)+" : Saving model after epoch completion")
checkpoint_path = os.path.join(FLAGS.train_dir, "model.ckpt.epoch-"+str(epoch))
model.saver.save(sess, checkpoint_path)
# Backup Rouge Dict
print("MRT: Epoch "+str(epoch)+" : Saving rouge dictionary")
rouge_generator.save_rouge_dict()
# Performance on the validation set
print("MRT: Epoch "+str(epoch)+" : Performance on the validation data")
# Get Predictions: Prohibit the use of gold labels
validation_logits, validation_labels, validation_weights = batch_predict_with_a_model(validation_data, model, session=sess)
# Validation Accuracy and Prediction
validation_acc, validation_sum = sess.run([model.final_accuracy, model.vaccuracy_summary], feed_dict={model.logits_placeholder: validation_logits.eval(session=sess),
model.label_placeholder: validation_labels.eval(session=sess),
model.weight_placeholder: validation_weights.eval(session=sess)})
# Print Validation Summary
model.summary_writer.add_summary(validation_sum, (epoch*len(train_data.fileindices)))
print("MRT: Epoch "+str(epoch)+" : Validation ("+str(len(validation_data.fileindices))+") accuracy= {:.6f}".format(validation_acc))
# Writing validation predictions and final summaries
print("MRT: Epoch "+str(epoch)+" : Writing final validation summaries")
validation_data.write_prediction_summaries(validation_logits, "model.ckpt.epoch-"+str(epoch), session=sess)
# Extimate Rouge Scores
rouge_score = rouge_generator.get_full_rouge(FLAGS.train_dir+"/model.ckpt.epoch-"+str(epoch)+".validation-summary-topranked", "validation")
print("MRT: Epoch "+str(epoch)+" : Validation ("+str(len(validation_data.fileindices))+") rouge= {:.6f}".format(rouge_score))
# break
print("Optimization Finished!")
# ######################## Test Mode ###########################
def test():
"""
Test Mode: Loads an existing model and test it on the test set
"""
# Training: use the tf default graph
with tf.Graph().as_default() and tf.device(FLAGS.use_gpu):
config = tf.ConfigProto(allow_soft_placement = True)
# Start a session
with tf.Session(config = config) as sess:
### Prepare data for training
print("Prepare vocab dict and read pretrained word embeddings ...")
vocab_dict, word_embedding_array = DataProcessor().prepare_vocab_embeddingdict()
# vocab_dict contains _PAD and _UNK but not word_embedding_array
print("Prepare test data ...")
test_data = DataProcessor().prepare_news_data(vocab_dict, data_type="test")
# Create Model with various operations
model = MY_Model(sess, len(vocab_dict)-2)
# # Initialize word embedding before training
# print("Initialize word embedding vocabulary with pretrained embeddings ...")
# sess.run(model.vocab_embed_variable.assign(word_embedding_array))
# Select the model
if (os.path.isfile(FLAGS.train_dir+"/model.ckpt.epoch-"+str(FLAGS.model_to_load))):
selected_modelpath = FLAGS.train_dir+"/model.ckpt.epoch-"+str(FLAGS.model_to_load)
else:
print("Model not found in checkpoint folder.")
exit(0)
# Reload saved model and test
print("Reading model parameters from %s" % selected_modelpath)
model.saver.restore(sess, selected_modelpath)
print("Model loaded.")
# Initialize word embedding before training
print("Initialize word embedding vocabulary with pretrained embeddings ...")
sess.run(model.vocab_embed_variable.assign(word_embedding_array))
# Test Accuracy and Prediction
print("Performance on the test data:")
FLAGS.authorise_gold_label = False
test_logits, test_labels, test_weights = batch_predict_with_a_model(test_data, model, session=sess)
test_acc = sess.run(model.final_accuracy, feed_dict={model.logits_placeholder: test_logits.eval(session=sess),
model.label_placeholder: test_labels.eval(session=sess),
model.weight_placeholder: test_weights.eval(session=sess)})
# Print Test Summary
print("Test ("+str(len(test_data.fileindices))+") accuracy= {:.6f}".format(test_acc))
# Writing test predictions and final summaries
test_data.write_prediction_summaries(test_logits, "model.ckpt.epoch-"+str(FLAGS.model_to_load), session=sess)
######################## Main Function ###########################
def main(_):
if FLAGS.exp_mode == "train":
train()
else:
test()
if __name__ == "__main__":
tf.app.run()