-
Notifications
You must be signed in to change notification settings - Fork 21
/
GA_RO.Rmd
684 lines (513 loc) · 29 KB
/
GA_RO.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
---
title: "Georgia Early Voting Statistics - 2021 Senate Run-Off Election"
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
library(tidyverse)
library(knitr)
library(kableExtra)
library(scales)
library(DT)
library(highcharter)
GA_stats <- read_csv("D:/DropBox/Dropbox/Mail_Ballots_2020/markdown/2020RO_Early_Vote_GA.csv")
# Setup
party_shell <- data.frame(Party=character(),
Count=integer(),
Percent=double(),
stringsAsFactors=FALSE)
party_shell[1,1] <- "Democrats"
party_shell[2,1] <- "Republicans"
party_shell[3,1] <- "Minor"
party_shell[4,1] <- "No Party Affiliation"
party_shell[5,1] <- "TOTAL"
race_shell <- data.frame(Race=character(),
Count=integer(),
Percent=double(),
stringsAsFactors=FALSE)
race_shell[1,1] <- "Non-Hispanic White"
race_shell[2,1] <- "Non-Hispanic Black"
race_shell[3,1] <- "Hispanic"
race_shell[4,1] <- "Non-Hispanic Asian American"
race_shell[5,1] <- "Non-Hispanic Native American"
race_shell[6,1] <- "Other/Multiple/Unknown"
race_shell[7,1] <- "TOTAL"
race_shell_returned <- data.frame(Race=character(),
Count=integer(),
Frequency=double(),
Count2=integer(),
Rate=integer(),
stringsAsFactors=FALSE)
race_shell_returned[1,1] <- "Non-Hispanic White"
race_shell_returned[2,1] <- "Non-Hispanic Black"
race_shell_returned[3,1] <- "Hispanic"
race_shell_returned[4,1] <- "Non-Hispanic Asian American"
race_shell_returned[5,1] <- "Non-Hispanic Native American"
race_shell_returned[6,1] <- "Other/Multiple/Unknown"
race_shell_returned[7,1] <- "TOTAL"
GA_age_shell <- data.frame(Age=character(),
Count=integer(),
Percent=double(),
stringsAsFactors=FALSE)
GA_age_shell[1,1] <- "18 to 24"
GA_age_shell[2,1] <- "25 to 34"
GA_age_shell[3,1] <- "35 to 44"
GA_age_shell[4,1] <- "45 and 55"
GA_age_shell[5,1] <- "56 and 65"
GA_age_shell[6,1] <- "66 and up"
GA_age_shell[7,1] <- "Age Unknown"
GA_age_shell[8,1] <- "TOTAL"
GA_age_shell_returned <- data.frame(Race=character(),
Count=integer(),
Frequency=double(),
Count2=integer(),
Rate=integer(),
stringsAsFactors=FALSE)
GA_age_shell_returned[1,1] <- "18 to 24"
GA_age_shell_returned[2,1] <- "25 to 34"
GA_age_shell_returned[3,1] <- "35 to 44"
GA_age_shell_returned[4,1] <- "45 and 55"
GA_age_shell_returned[5,1] <- "56 and 65"
GA_age_shell_returned[6,1] <- "66 and up"
GA_age_shell_returned[7,1] <- "Age Unknown"
GA_age_shell_returned[8,1] <- "TOTAL"
gender_shell <- data.frame(Gender=character(),
Count=integer(),
Percent=double(),
stringsAsFactors=FALSE)
gender_shell[1,1] <- "Female"
gender_shell[2,1] <- "Male"
gender_shell[3,1] <- "Unknown"
gender_shell[4,1] <- "TOTAL"
gender_shell_full <- data.frame(Gender=character(),
Count=integer(),
Frequency=double(),
Count2=integer(),
Rate=integer(),
stringsAsFactors=FALSE)
gender_shell_full[1,1] <- "Female"
gender_shell_full[2,1] <- "Male"
gender_shell_full[3,1] <- "Unknown"
gender_shell_full[4,1] <- "TOTAL"
age_shell <- data.frame(Age=character(),
Count=integer(),
Percent=double(),
stringsAsFactors=FALSE)
age_shell[1,1] <- "18 to 24"
age_shell[2,1] <- "25 to 34"
age_shell[3,1] <- "35 to 44"
age_shell[4,1] <- "45 to 54"
age_shell[5,1] <- "55 to 64"
age_shell[6,1] <- "65 and up"
age_shell[7,1] <- "TOTAL"
voted_shell <- data.frame(Voted=character(),
Count=integer(),
Percent=double(),
stringsAsFactors=FALSE)
voted_shell[1,1] <- "Voted in 2020 General"
voted_shell[2,1] <- "Did Not Vote in 2020 General"
voted_shell[3,1] <- "TOTAL"
voted_shell_full <- data.frame(Voted=character(),
Count=integer(),
Frequency=double(),
Count2=integer(),
Rate=integer(),
stringsAsFactors=FALSE)
voted_shell_full[1,1] <- "Voted in 2020 General"
voted_shell_full[2,1] <- "Did Not Vote in 2020 General"
voted_shell_full[3,1] <- "TOTAL"
# Georgia
GA_req_race <- race_shell
GA_req_race[1,2] <- sum(GA_stats$Mail.Req.nhwhite.Tot)
GA_req_race[2,2] <- sum(GA_stats$Mail.Req.nhblack.Tot)
GA_req_race[3,2] <- sum(GA_stats$Mail.Req.hisp.Tot)
GA_req_race[4,2] <- sum(GA_stats$Mail.Req.nhasian.Tot)
GA_req_race[5,2] <- sum(GA_stats$Mail.Req.nhna.Tot)
GA_req_race[6,2] <- sum(GA_stats$Mail.Req.oth.Tot)
GA_req_race[7,2] <- sum(GA_stats$Mail.Req.Tot)
GA_req_race$Percent <- 100*GA_req_race$Count/GA_req_race[7,2]
GA_req_age <- GA_age_shell
GA_req_age[1,2] <- sum(GA_stats$Mail.Req.age1824.Tot)
GA_req_age[2,2] <- sum(GA_stats$Mail.Req.age2534.Tot)
GA_req_age[3,2] <- sum(GA_stats$Mail.Req.age3544.Tot)
GA_req_age[4,2] <- sum(GA_stats$Mail.Req.age4554.Tot)
GA_req_age[5,2] <- sum(GA_stats$Mail.Req.age5564.Tot)
GA_req_age[6,2] <- sum(GA_stats$Mail.Req.age65up.Tot)
GA_req_age[7,2] <- sum(GA_stats$Mail.Req.ageunk.Tot)
GA_req_age[8,2] <- sum(GA_stats$Mail.Req.Tot)
GA_req_age$Percent <- 100*GA_req_age$Count/GA_req_age[8,2]
GA_req_voted <- voted_shell
GA_req_voted[1,2] <- sum(GA_stats$Mail.Req.Vote.Tot)
GA_req_voted[2,2] <- sum(GA_stats$Mail.Req.Novote.Tot)
GA_req_voted[3,2] <- sum(GA_stats$Mail.Req.Tot)
GA_req_voted$Percent <- 100*GA_req_voted$Count/GA_req_voted[3,2]
GA_mail_accept_race <- race_shell_returned
GA_mail_accept_race[1,2] <- sum(GA_stats$Mail.Accept.nhwhite.Tot)
GA_mail_accept_race[2,2] <- sum(GA_stats$Mail.Accept.nhblack.Tot)
GA_mail_accept_race[3,2] <- sum(GA_stats$Mail.Accept.hisp.Tot)
GA_mail_accept_race[4,2] <- sum(GA_stats$Mail.Accept.nhasian.Tot)
GA_mail_accept_race[5,2] <- sum(GA_stats$Mail.Accept.nhna.Tot)
GA_mail_accept_race[6,2] <- sum(GA_stats$Mail.Accept.oth.Tot)
GA_mail_accept_race[7,2] <- sum(GA_stats$Mail.Accept.Tot)
GA_mail_accept_race[1,4] <- sum(GA_stats$Mail.Req.nhwhite.Tot)
GA_mail_accept_race[2,4] <- sum(GA_stats$Mail.Req.nhblack.Tot)
GA_mail_accept_race[3,4] <- sum(GA_stats$Mail.Req.hisp.Tot)
GA_mail_accept_race[4,4] <- sum(GA_stats$Mail.Req.nhasian.Tot)
GA_mail_accept_race[5,4] <- sum(GA_stats$Mail.Req.nhna.Tot)
GA_mail_accept_race[6,4] <- sum(GA_stats$Mail.Req.oth.Tot)
GA_mail_accept_race[7,4] <- sum(GA_stats$Mail.Req.Tot)
GA_mail_accept_race$Frequency <- 100 * GA_mail_accept_race$Count/GA_mail_accept_race[7,2]
GA_mail_accept_race$Rate <- 100*GA_mail_accept_race$Count/GA_mail_accept_race$Count2
colnames(GA_mail_accept_race) <- c("Race/Ethnicity", "Returned Ballots", "Freq. Distribution", "Requested Ballots", "Return Rate")
GA_mail_accept_age <- GA_age_shell_returned
GA_mail_accept_age[1,2] <- sum(GA_stats$Mail.Accept.age1824.Tot)
GA_mail_accept_age[2,2] <- sum(GA_stats$Mail.Accept.age2534.Tot)
GA_mail_accept_age[3,2] <- sum(GA_stats$Mail.Accept.age3544.Tot)
GA_mail_accept_age[4,2] <- sum(GA_stats$Mail.Accept.age4554.Tot)
GA_mail_accept_age[5,2] <- sum(GA_stats$Mail.Accept.age5564.Tot)
GA_mail_accept_age[6,2] <- sum(GA_stats$Mail.Accept.age65up.Tot)
GA_mail_accept_age[7,2] <- sum(GA_stats$Mail.Accept.ageunk.Tot)
GA_mail_accept_age[8,2] <- sum(GA_stats$Mail.Accept.Tot)
GA_mail_accept_age[1,4] <- sum(GA_stats$Mail.Req.age1824.Tot)
GA_mail_accept_age[2,4] <- sum(GA_stats$Mail.Req.age2534.Tot)
GA_mail_accept_age[3,4] <- sum(GA_stats$Mail.Req.age3544.Tot)
GA_mail_accept_age[4,4] <- sum(GA_stats$Mail.Req.age4554.Tot)
GA_mail_accept_age[5,4] <- sum(GA_stats$Mail.Req.age5564.Tot)
GA_mail_accept_age[6,4] <- sum(GA_stats$Mail.Req.age65up.Tot)
GA_mail_accept_age[7,4] <- sum(GA_stats$Mail.Req.ageunk.Tot)
GA_mail_accept_age[8,4] <- sum(GA_stats$Mail.Req.Tot)
GA_mail_accept_age$Frequency <- 100 * GA_mail_accept_age$Count/GA_mail_accept_age[8,2]
GA_mail_accept_age$Rate <- 100*GA_mail_accept_age$Count/GA_mail_accept_age$Count2
colnames(GA_mail_accept_age) <- c("Age", "Returned Ballots", "Freq. Distribution", "Requested Ballots", "Return Rate")
GA_mail_accept_voted <- voted_shell_full
GA_mail_accept_voted[1,2] <- sum(GA_stats$Mail.Accept.Vote.Tot)
GA_mail_accept_voted[2,2] <- sum(GA_stats$Mail.Accept.Novote.Tot)
GA_mail_accept_voted[3,2] <- sum(GA_stats$Mail.Accept.Tot)
GA_mail_accept_voted[1,4] <- sum(GA_stats$Mail.Req.Vote.Tot)
GA_mail_accept_voted[2,4] <- sum(GA_stats$Mail.Req.Novote.Tot)
GA_mail_accept_voted[3,4] <- sum(GA_stats$Mail.Req.Tot)
GA_mail_accept_voted$Frequency <- 100 * GA_mail_accept_voted$Count/GA_mail_accept_voted[3,2]
GA_mail_accept_voted$Rate <- 100*GA_mail_accept_voted$Count/GA_mail_accept_voted$Count2
GA_inperson_accept_race <- race_shell_returned
GA_inperson_accept_race[1,2] <- sum(GA_stats$Inperson.Accept.nhwhite.Tot)
GA_inperson_accept_race[2,2] <- sum(GA_stats$Inperson.Accept.nhblack.Tot)
GA_inperson_accept_race[3,2] <- sum(GA_stats$Inperson.Accept.hisp.Tot)
GA_inperson_accept_race[4,2] <- sum(GA_stats$Inperson.Accept.nhasian.Tot)
GA_inperson_accept_race[5,2] <- sum(GA_stats$Inperson.Accept.nhna.Tot)
GA_inperson_accept_race[6,2] <- sum(GA_stats$Inperson.Accept.oth.Tot)
GA_inperson_accept_race[7,2] <- sum(GA_stats$Inperson.Accept.Tot)
GA_inperson_accept_race[1,4] <- sum(GA_stats$Reg.Voters.nhwhite)
GA_inperson_accept_race[2,4] <- sum(GA_stats$Reg.Voters.nhblack)
GA_inperson_accept_race[3,4] <- sum(GA_stats$Reg.Voters.hisp)
GA_inperson_accept_race[4,4] <- sum(GA_stats$Reg.Voters.nhasian)
GA_inperson_accept_race[5,4] <- sum(GA_stats$Reg.Voters.nhna)
GA_inperson_accept_race[6,4] <- sum(GA_stats$Reg.Voters.oth)
GA_inperson_accept_race[7,4] <- sum(GA_stats$Reg.Voters)
GA_inperson_accept_race$Frequency <- 100 * GA_inperson_accept_race$Count/GA_inperson_accept_race[7,2]
GA_inperson_accept_race$Rate <- 100*GA_inperson_accept_race$Count/GA_inperson_accept_race$Count2
colnames(GA_inperson_accept_race) <- c("Race/Ethnicity", "In-Person Votes", "Freq. Distribution", "Registered Voters", "In-Person Rate")
GA_inperson_accept_age <- GA_age_shell_returned
GA_inperson_accept_age[1,2] <- sum(GA_stats$Inperson.Accept.age1824.Tot)
GA_inperson_accept_age[2,2] <- sum(GA_stats$Inperson.Accept.age2534.Tot)
GA_inperson_accept_age[3,2] <- sum(GA_stats$Inperson.Accept.age3544.Tot)
GA_inperson_accept_age[4,2] <- sum(GA_stats$Inperson.Accept.age4554.Tot)
GA_inperson_accept_age[5,2] <- sum(GA_stats$Inperson.Accept.age5564.Tot)
GA_inperson_accept_age[6,2] <- sum(GA_stats$Inperson.Accept.age65up.Tot)
GA_inperson_accept_age[7,2] <- sum(GA_stats$Inperson.Accept.ageunk.Tot)
GA_inperson_accept_age[8,2] <- sum(GA_stats$Inperson.Accept.Tot)
GA_inperson_accept_age[1,4] <- sum(GA_stats$Reg.Voters.age1824)
GA_inperson_accept_age[2,4] <- sum(GA_stats$Reg.Voters.age2534)
GA_inperson_accept_age[3,4] <- sum(GA_stats$Reg.Voters.age3544)
GA_inperson_accept_age[4,4] <- sum(GA_stats$Reg.Voters.age4554)
GA_inperson_accept_age[5,4] <- sum(GA_stats$Reg.Voters.age5564)
GA_inperson_accept_age[6,4] <- sum(GA_stats$Reg.Voters.age65up)
GA_inperson_accept_age[7,4] <- sum(GA_stats$Reg.Voters.ageunk)
GA_inperson_accept_age[8,4] <- sum(GA_stats$Reg.Voters)
GA_inperson_accept_age$Frequency <- 100 * GA_inperson_accept_age$Count/GA_inperson_accept_age[8,2]
GA_inperson_accept_age$Rate <- 100*GA_inperson_accept_age$Count/GA_inperson_accept_age$Count2
colnames(GA_inperson_accept_age) <- c("Age", "In-Person Votes", "Freq. Distribution", "Registered Voters", "In-Person Rate")
GA_inperson_accept_voted <- voted_shell_full
GA_inperson_accept_voted[1,2] <- sum(GA_stats$Inperson.Accept.Vote.Tot)
GA_inperson_accept_voted[2,2] <- sum(GA_stats$Inperson.Accept.Novote.Tot)
GA_inperson_accept_voted[3,2] <- sum(GA_stats$Inperson.Accept.Tot)
GA_inperson_accept_voted[1,4] <- sum(GA_stats$Reg.Voters.Vote)
GA_inperson_accept_voted[2,4] <- sum(GA_stats$Reg.Voters.Novote)
GA_inperson_accept_voted[3,4] <- sum(GA_stats$Reg.Voters)
GA_inperson_accept_voted$Frequency <- 100 * GA_inperson_accept_voted$Count/GA_inperson_accept_voted[3,2]
GA_inperson_accept_voted$Rate <- 100*GA_inperson_accept_voted$Count/GA_inperson_accept_voted$Count2
colnames(GA_inperson_accept_voted) <- c("2020 General Voted", "In-Person Votes", "Freq. Distribution", "Registered Voters", "In-Person Rate")
GA_voted_race <- race_shell_returned
GA_voted_race[1,2] <- sum(GA_stats$Inperson.Accept.nhwhite.Tot) + sum(GA_stats$Mail.Accept.nhwhite.Tot)
GA_voted_race[2,2] <- sum(GA_stats$Inperson.Accept.nhblack.Tot) + sum(GA_stats$Mail.Accept.nhblack.Tot)
GA_voted_race[3,2] <- sum(GA_stats$Inperson.Accept.hisp.Tot) + sum(GA_stats$Mail.Accept.hisp.Tot)
GA_voted_race[4,2] <- sum(GA_stats$Inperson.Accept.nhasian.Tot) + sum(GA_stats$Mail.Accept.nhasian.Tot)
GA_voted_race[5,2] <- sum(GA_stats$Inperson.Accept.nhna.Tot) + sum(GA_stats$Mail.Accept.nhna.Tot)
GA_voted_race[6,2] <- sum(GA_stats$Inperson.Accept.oth.Tot) + sum(GA_stats$Mail.Accept.oth.Tot)
GA_voted_race[7,2] <- sum(GA_stats$Inperson.Accept.Tot) + sum(GA_stats$Mail.Accept.Tot)
GA_voted_race[1,4] <- sum(GA_stats$Reg.Voters.nhwhite)
GA_voted_race[2,4] <- sum(GA_stats$Reg.Voters.nhblack)
GA_voted_race[3,4] <- sum(GA_stats$Reg.Voters.hisp)
GA_voted_race[4,4] <- sum(GA_stats$Reg.Voters.nhasian)
GA_voted_race[5,4] <- sum(GA_stats$Reg.Voters.nhna)
GA_voted_race[6,4] <- sum(GA_stats$Reg.Voters.oth)
GA_voted_race[7,4] <- sum(GA_stats$Reg.Voters)
GA_voted_race$Frequency <- 100 * GA_voted_race$Count/GA_voted_race[7,2]
GA_voted_race$Rate <- 100*GA_voted_race$Count/GA_voted_race$Count2
colnames(GA_voted_race) <- c("Race/Ethnicity", "Total Early Votes", "Freq. Distribution", "Registered Voters", "Turnout Rate")
GA_voted_age <- GA_age_shell_returned
GA_voted_age[1,2] <- sum(GA_stats$Inperson.Accept.age1824.Tot) + sum(GA_stats$Mail.Accept.age1824.Tot)
GA_voted_age[2,2] <- sum(GA_stats$Inperson.Accept.age2534.Tot) + sum(GA_stats$Mail.Accept.age2534.Tot)
GA_voted_age[3,2] <- sum(GA_stats$Inperson.Accept.age3544.Tot) + sum(GA_stats$Mail.Accept.age3544.Tot)
GA_voted_age[4,2] <- sum(GA_stats$Inperson.Accept.age4554.Tot) + sum(GA_stats$Mail.Accept.age4554.Tot)
GA_voted_age[5,2] <- sum(GA_stats$Inperson.Accept.age5564.Tot) + sum(GA_stats$Mail.Accept.age5564.Tot)
GA_voted_age[6,2] <- sum(GA_stats$Inperson.Accept.age65up.Tot) + sum(GA_stats$Mail.Accept.age65up.Tot)
GA_voted_age[7,2] <- sum(GA_stats$Inperson.Accept.ageunk.Tot) + sum(GA_stats$Mail.Accept.ageunk.Tot)
GA_voted_age[8,2] <- sum(GA_stats$Inperson.Accept.Tot) + sum(GA_stats$Mail.Accept.Tot)
GA_voted_age[1,4] <- sum(GA_stats$Reg.Voters.age1824)
GA_voted_age[2,4] <- sum(GA_stats$Reg.Voters.age2534)
GA_voted_age[3,4] <- sum(GA_stats$Reg.Voters.age3544)
GA_voted_age[4,4] <- sum(GA_stats$Reg.Voters.age4554)
GA_voted_age[5,4] <- sum(GA_stats$Reg.Voters.age5564)
GA_voted_age[6,4] <- sum(GA_stats$Reg.Voters.age65up)
GA_voted_age[7,4] <- sum(GA_stats$Reg.Voters.ageunk)
GA_voted_age[8,4] <- sum(GA_stats$Reg.Voters)
GA_voted_age$Frequency <- 100 * GA_voted_age$Count/GA_voted_age[8,2]
GA_voted_age$Rate <- 100*GA_voted_age$Count/GA_voted_age$Count2
GA_voted_age[7,5] <- NA
colnames(GA_voted_age) <- c("Age", "Total Early Votes", "Freq. Distribution", "Registered Voters", "Turnout Rate")
GA_voted_voted <- voted_shell_full
GA_voted_voted[1,2] <- sum(GA_stats$Inperson.Accept.Vote.Tot) + sum(GA_stats$Mail.Accept.Vote.Tot)
GA_voted_voted[2,2] <- sum(GA_stats$Inperson.Accept.Novote.Tot) + sum(GA_stats$Mail.Accept.Novote.Tot)
GA_voted_voted[3,2] <- sum(GA_stats$Inperson.Accept.Tot) + sum(GA_stats$Mail.Accept.Tot)
GA_voted_voted[1,4] <- sum(GA_stats$Reg.Voters.Vote)
GA_voted_voted[2,4] <- sum(GA_stats$Reg.Voters.Novote)
GA_voted_voted[3,4] <- sum(GA_stats$Reg.Voters)
GA_voted_voted$Frequency <- 100 * GA_voted_voted$Count/GA_voted_voted[3,2]
GA_voted_voted$Rate <- 100*GA_voted_voted$Count/GA_voted_voted$Count2
colnames(GA_voted_voted) <- c("2020 General Voted", "Total Early Votes", "Freq. Distribution", "Registered Voters", "Turnout Rate")
GA_stats <- mutate(GA_stats, Mail.Req.All = Mail.Req.Tot + Mail.App.Reject.Tot)
GA_stats <- mutate(GA_stats, Mail.Return.All = Mail.Accept.Tot + Mail.Reject.Tot)
GA_stats <- mutate(GA_stats, Voted.Tot = (Mail.Accept.Tot + Inperson.Accept.Tot))
GA_stats_req <- select(GA_stats, County, Reg.Voters, Mail.Req.Tot, Pct.Req)
GA_stats_reject_app <- select(GA_stats, County, Mail.Req.All, Mail.App.Reject.Tot, Pct.App.Reject)
GA_stats_accept <- select(GA_stats, County, Mail.Accept.Tot, Mail.Req.Tot, Pct.Mail.Accept)
GA_stats_inperson <- select(GA_stats, County, Inperson.Accept.Tot, Reg.Voters, Pct.Inperson)
GA_stats_voted <- select(GA_stats, County, Voted.Tot, Reg.Voters, Pct.Voted)
GA_stats_reject_mail <- select(GA_stats, County, Mail.Return.All, Mail.Reject.Tot, Pct.Mail.Reject)
```
## {.tabset}
Last Report: 1/6/2021
Source: [https://elections.sos.ga.gov/Elections/voterabsenteefile.do](https://elections.sos.ga.gov/Elections/voterabsenteefile.do)
Statistics from the 2020 general election are available [here](https://electproject.github.io/Early-Vote-2020G/GA.html)
### Total Early Votes
Total Early Votes: **`r format(as.numeric(sum(GA_stats$Inperson.Accept.Tot) + sum(GA_stats$Mail.Accept.Tot)), big.mark =",")`**
Percent Turnout (of Registered Voters): **`r paste(round(100*(sum(GA_stats$Inperson.Accept.Tot) + sum(GA_stats$Mail.Accept.Tot)) /sum(GA_stats$Reg.Voters), digits = 1),"%", sep = "")`**
``` {r echo = FALSE}
GA_map_data <- GA_stats
GA_map_data <- mutate(GA_map_data, percent = round(100*(Pct.Voted), digits = 1))
# GA_map_data <- rename(GA_map_data, fips = FIPS_CODE)
GA_map_data <- mutate(GA_map_data, fips = as.character(FIPS_CODE))
mapfile <- download_map_data("countries/us/us-ga-all.js")
mapdata <- get_data_from_map(mapfile)
mapdata$row <- as.integer(rownames(mapdata))
GA_map_data <- left_join(GA_map_data, mapdata, by = "fips")
GA_map_data <- arrange(GA_map_data, row)
hcmap(map = "countries/us/us-ga-all", data = GA_map_data,
value = "percent", name = "Percent Accepted", joinBy = "fips") %>%
hc_title(text ="Total Votes as Percent of Registered Voters") %>%
hc_subtitle(text = "County plots may not be shaded using the same scale")
```
``` {r echo = FALSE}
datatable(GA_stats_voted, colnames = c("County", "Total Votes", "Reg Voters", "Turnout Rate"), rownames = F) %>%
formatPercentage('Pct.Voted', 1) %>%
formatRound(c('Voted.Tot', 'Reg.Voters'), 0, mark = ",")
```
#### Total Early Votes by Race and Ethnicity
``` {r echo = FALSE}
kable(GA_voted_race, format.args = list(big.mark = ",",
scientific = FALSE), digits = 1) %>%
kable_styling(bootstrap_options = "striped", full_width = F, position = "left")
```
#### Total Early Votes by Age
``` {r echo = FALSE}
kable(GA_voted_age, format.args = list(big.mark = ",",
scientific = FALSE), digits = 1) %>%
kable_styling(bootstrap_options = "striped", full_width = F, position = "left")
```
Note: The "Unknown" Age category is primarily voters who registered to vote after I purchased my most recent statewide voter file in October.
#### Total Early Votes by Vote in 2020 General Election
``` {r echo = FALSE}
kable(GA_voted_voted, format.args = list(big.mark = ",",
scientific = FALSE), digits = 1) %>%
kable_styling(bootstrap_options = "striped", full_width = F, position = "left")
```
### In-Person Early Votes
Total In-Person Early Votes: **`r format(as.numeric(sum(GA_stats$Inperson.Accept.Tot)), big.mark =",")`**
Percent In-Person Early Votes (of Registered Voters): **`r paste(round(100*sum(GA_stats$Inperson.Accept.Tot)/sum(GA_stats$Reg.Voters), digits = 1),"%", sep = "")`**
``` {r echo = FALSE}
GA_map_data <- GA_stats
GA_map_data <- mutate(GA_map_data, percent = round(100*(Pct.Inperson), digits = 1))
# GA_map_data <- rename(GA_map_data, fips = FIPS_CODE)
GA_map_data <- mutate(GA_map_data, fips = as.character(FIPS_CODE))
mapfile <- download_map_data("countries/us/us-ga-all.js")
mapdata <- get_data_from_map(mapfile)
mapdata$row <- as.integer(rownames(mapdata))
GA_map_data <- left_join(GA_map_data, mapdata, by = "fips")
GA_map_data <- arrange(GA_map_data, row)
hcmap(map = "countries/us/us-ga-all", data = GA_map_data,
value = "percent", name = "Percent Accepted", joinBy = "fips") %>%
hc_title(text ="In-Person Votes as Percent of Registered Voters") %>%
hc_subtitle(text = "County plots may not be shaded using the same scale")
```
``` {r echo = FALSE}
datatable(GA_stats_inperson, colnames = c("County", "In-Person Votes", "Reg Voters", "Percent Voted"), rownames = F) %>%
formatPercentage('Pct.Inperson', 1) %>%
formatRound(c('Inperson.Accept.Tot', 'Reg.Voters'), 0, mark = ",")
```
#### In-Person Votes by Race and Ethnicity
``` {r echo = FALSE}
kable(GA_inperson_accept_race, format.args = list(big.mark = ",",
scientific = FALSE), digits = 1) %>%
kable_styling(bootstrap_options = "striped", full_width = F, position = "left")
```
#### In-Person Votes by Age
``` {r echo = FALSE}
kable(GA_inperson_accept_age, format.args = list(big.mark = ",",
scientific = FALSE), digits = 1) %>%
kable_styling(bootstrap_options = "striped", full_width = F, position = "left")
```
#### In-Person Votes by Vote in 2020 General Election
``` {r echo = FALSE}
kable(GA_inperson_accept_voted, format.args = list(big.mark = ",",
scientific = FALSE), digits = 1) %>%
kable_styling(bootstrap_options = "striped", full_width = F, position = "left")
```
### Mail Ballots Accepted
Total Accepted Ballots: **`r format(as.numeric(sum(GA_stats$Mail.Accept.Tot)), big.mark =",")`**
Return Rate (of Requested Ballots): **`r paste(round(100*sum(GA_stats$Mail.Accept.Tot)/sum(GA_stats$Mail.Req.Tot), digits = 1),"%", sep = "")`**
``` {r echo = FALSE}
GA_map_data <- GA_stats
GA_map_data <- mutate(GA_map_data, percent = round(100*(Pct.Mail.Accept), digits = 1))
# GA_map_data <- rename(GA_map_data, fips = FIPS_CODE)
GA_map_data <- mutate(GA_map_data, fips = as.character(FIPS_CODE))
mapfile <- download_map_data("countries/us/us-ga-all.js")
mapdata <- get_data_from_map(mapfile)
mapdata$row <- as.integer(rownames(mapdata))
GA_map_data <- left_join(GA_map_data, mapdata, by = "fips")
GA_map_data <- arrange(GA_map_data, row)
hcmap(map = "countries/us/us-ga-all", data = GA_map_data,
value = "percent", name = "Percent Accepted", joinBy = "fips") %>%
hc_title(text ="Mail Ballot Acceptance Rate of Requested Ballots") %>%
hc_subtitle(text = "County plots may not be shaded using the same scale")
```
``` {r echo = FALSE}
datatable(GA_stats_accept, colnames = c("County", "Accepted Mail Ballots", "Mail Ballot Requests", "Percent Accepted"), rownames = F) %>%
formatPercentage('Pct.Mail.Accept', 1) %>%
formatRound(c('Mail.Accept.Tot', 'Mail.Req.Tot'), 0, mark = ",")
```
#### Mail Ballots Accepted by Race and Ethnicity
``` {r echo = FALSE}
kable(GA_mail_accept_race, format.args = list(big.mark = ",",
scientific = FALSE), digits = 1) %>%
kable_styling(bootstrap_options = "striped", full_width = F, position = "left")
```
#### Mail Ballots Accepted by Age
``` {r echo = FALSE}
kable(GA_mail_accept_age, format.args = list(big.mark = ",",
scientific = FALSE), digits = 1) %>%
kable_styling(bootstrap_options = "striped", full_width = F, position = "left")
```
#### Mail Ballots Accepted by Vote in 2020 General Election
``` {r echo = FALSE}
kable(GA_mail_accept_voted, format.args = list(big.mark = ",",
scientific = FALSE), digits = 1) %>%
kable_styling(bootstrap_options = "striped", full_width = F, position = "left")
```
### Mail Ballots Rejected
Total Rejected Mail Ballots: **`r format(as.numeric(sum(GA_stats$Mail.Reject.Tot)), big.mark =",")`**
Rejection Rate (of All Returned Mail Ballots): **`r paste(round(100*sum(GA_stats$Mail.Reject.Tot)/sum(GA_stats$Mail.Return.All), digits = 1),"%", sep = "")`**
Note: "All Returned Mail Ballots" includes Accepted Mail Ballots and Rejected Mail Ballots. I count only once voters with multiple rejected mail ballots and I exclude any voters who had a rejected mail ballot but subsequently successfully voted.
``` {r echo = FALSE}
GA_map_data <- GA_stats
GA_map_data <- mutate(GA_map_data, percent = round(100*(Pct.Mail.Reject), digits = 1))
# GA_map_data <- rename(GA_map_data, fips = FIPS_CODE)
GA_map_data <- mutate(GA_map_data, fips = as.character(FIPS_CODE))
mapfile <- download_map_data("countries/us/us-ga-all.js")
mapdata <- get_data_from_map(mapfile)
mapdata$row <- as.integer(rownames(mapdata))
GA_map_data <- left_join(GA_map_data, mapdata, by = "fips")
GA_map_data <- arrange(GA_map_data, row)
hcmap(map = "countries/us/us-ga-all", data = GA_map_data,
value = "percent", name = "Percent Rejected", joinBy = "fips") %>%
hc_title(text ="Mail Ballot Rejection Rate of All Returned Mail Ballots") %>%
hc_subtitle(text = "County plots may not be shaded using the same scale")
```
``` {r echo = FALSE}
datatable(GA_stats_reject_mail, colnames = c("County", "All Mail Ballots Returned", "Rejected Mail Ballots", "Percent Rejected"), rownames = F) %>%
formatPercentage('Pct.Mail.Reject', 1) %>%
formatRound(c('Mail.Reject.Tot', 'Mail.Return.All'), 0, mark = ",")
```
### Mail Ballot Requests
Total Requests: **`r format(as.numeric(sum(GA_stats$Mail.Req.Tot)), big.mark =",")`**
Request Rate (of Registered voters): **`r paste(round(100*sum(GA_stats$Mail.Req.Tot)/sum(GA_stats$Reg.Voters), digits = 1),"%", sep = "")`**
``` {r echo = FALSE}
GA_map_data <- GA_stats
GA_map_data <- mutate(GA_map_data, percent = round(100*(Pct.Req), digits = 1))
# GA_map_data <- rename(GA_map_data, fips = FIPS_CODE)
GA_map_data <- mutate(GA_map_data, fips = as.character(FIPS_CODE))
mapfile <- download_map_data("countries/us/us-ga-all.js")
mapdata <- get_data_from_map(mapfile)
mapdata$row <- as.integer(rownames(mapdata))
GA_map_data <- left_join(GA_map_data, mapdata, by = "fips")
GA_map_data <- arrange(GA_map_data, row)
hcmap(map = "countries/us/us-ga-all", data = GA_map_data,
value = "percent", name = "Percent Requested", joinBy = "fips") %>%
hc_title(text ="Mail Ballot Request Rate of Registered Voters") %>%
hc_subtitle(text = "County plots may not be shaded using the same scale")
```
``` {r echo = FALSE}
datatable(GA_stats_req, colnames = c("County", "Registered Voters", "Mail Ballot Requests", "Percent Requested"), rownames = F) %>%
formatPercentage('Pct.Req', 1) %>%
formatRound(c('Mail.Req.Tot', 'Reg.Voters'), 0, mark = ",")
```
#### Mail Ballots Requested by Race and Ethnicity
``` {r echo = FALSE}
kable(GA_req_race, format.args = list(big.mark = ",",
scientific = FALSE), digits = 1) %>%
kable_styling(bootstrap_options = "striped", full_width = F, position = "left")
```
#### Mail Ballots Requested by Age
``` {r echo = FALSE}
kable(GA_req_age, format.args = list(big.mark = ",",
scientific = FALSE), digits = 1) %>%
kable_styling(bootstrap_options = "striped", full_width = F, position = "left")
```
#### Mail Ballots Requested by Vote in 2020 General Election
``` {r echo = FALSE}
kable(GA_req_voted, format.args = list(big.mark = ",",
scientific = FALSE), digits = 1) %>%
kable_styling(bootstrap_options = "striped", full_width = F, position = "left")
```
### Mail Ballot Rejected Applications
Total Rejected Applications: **`r format(as.numeric(sum(GA_stats$Mail.App.Reject.Tot)), big.mark =",")`**
Rejection Rate (of All Applications): **`r paste(round(100* sum(GA_stats$Mail.App.Reject.Tot)/(sum(GA_stats$Mail.App.Reject.Tot)+sum(GA_stats$Mail.Req.Tot)), digits = 1),"%", sep = "")`**
Notes: The mail ballot application rejection rate is the number of rejected applications divided by the sum of the number of accepted applications plus the number of rejected applications. I count only once voters with multiple rejected applications and I exclude any voters who had a rejected application but subsequently successfully corrected their application issue.
``` {r echo = FALSE}
GA_map_data <- GA_stats
GA_map_data <- mutate(GA_map_data, percent = round(100*(Pct.App.Reject), digits = 1))
# GA_map_data <- rename(GA_map_data, fips = FIPS_CODE)
GA_map_data <- mutate(GA_map_data, fips = as.character(FIPS_CODE))
mapfile <- download_map_data("countries/us/us-ga-all.js")
mapdata <- get_data_from_map(mapfile)
mapdata$row <- as.integer(rownames(mapdata))
GA_map_data <- left_join(GA_map_data, mapdata, by = "fips")
GA_map_data <- arrange(GA_map_data, row)
hcmap(map = "countries/us/us-ga-all", data = GA_map_data,
value = "percent", name = "Percent App Rejected", joinBy = "fips") %>%
hc_title(text ="Mail Ballot Application Rejection Rate of All Applications") %>%
hc_subtitle(text = "County plots may not be shaded using the same scale")
```
``` {r echo = FALSE}
datatable(GA_stats_reject_app, colnames = c("County", "All Mail Ballot Applications", "Rejected Applications", "Percent Rejected"), rownames = F) %>%
formatPercentage('Pct.App.Reject', 1) %>%
formatRound(c('Mail.Req.All', 'Mail.App.Reject.Tot'), 0, mark = ",")
```