-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathMI.Rmd
230 lines (170 loc) · 8.04 KB
/
MI.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
---
title: "Michigan Early Voting Statistics"
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
library(tidyverse)
library(knitr)
library(kableExtra)
library(scales)
library(DT)
library(highcharter)
state_stats <- read_csv("D:/DropBox/Dropbox/Mail_Ballots_2020/markdown/2020G_Early_Vote.csv")
MI_stats <- read_csv("D:/DropBox/Dropbox/Mail_Ballots_2020/markdown/2020G_Early_Vote_MI.csv")
# Setup
party_shell <- data.frame(Party=character(),
Count=integer(),
Percent=double(),
stringsAsFactors=FALSE)
party_shell[1,1] <- "Democrats"
party_shell[2,1] <- "Republicans"
party_shell[3,1] <- "Minor"
party_shell[4,1] <- "No Party Affiliation"
party_shell[5,1] <- "TOTAL"
race_shell <- data.frame(Race=character(),
Count=integer(),
Percent=double(),
stringsAsFactors=FALSE)
race_shell[1,1] <- "Non-Hispanic White"
race_shell[2,1] <- "Non-Hispanic Black"
race_shell[3,1] <- "Hispanic"
race_shell[4,1] <- "Non-Hispanic Asian American"
race_shell[5,1] <- "Non-Hispanic Native American"
race_shell[6,1] <- "Other/Multiple/Unknown"
race_shell[7,1] <- "TOTAL"
gender_shell <- data.frame(Gender=character(),
Count=integer(),
Percent=double(),
stringsAsFactors=FALSE)
gender_shell[1,1] <- "Female"
gender_shell[2,1] <- "Male"
gender_shell[3,1] <- "Unknown"
gender_shell[4,1] <- "TOTAL"
age_shell <- data.frame(Age=character(),
Count=integer(),
Percent=double(),
stringsAsFactors=FALSE)
age_shell[1,1] <- "18 to 24"
age_shell[2,1] <- "25 to 34"
age_shell[3,1] <- "35 to 44"
age_shell[4,1] <- "45 to 54"
age_shell[5,1] <- "55 to 64"
age_shell[6,1] <- "65 and up"
age_shell[7,1] <- "TOTAL"
# Michigan
age_shell <- data.frame(Race=character(),
Count=integer(),
Frequency=double(),
Count2=integer(),
Rate=integer(),
stringsAsFactors=FALSE)
age_shell[1,1] <- "18 to 24"
age_shell[2,1] <- "25 to 34"
age_shell[3,1] <- "35 to 44"
age_shell[4,1] <- "45 to 54"
age_shell[5,1] <- "55 to 64"
age_shell[6,1] <- "65 and up"
age_shell[7,1] <- "TOTAL"
MI_accept_age <- age_shell
MI_accept_age[1,2] <- state_stats[23,42]
MI_accept_age[2,2] <- state_stats[23,43]
MI_accept_age[3,2] <- state_stats[23,44]
MI_accept_age[4,2] <- state_stats[23,45]
MI_accept_age[5,2] <- state_stats[23,46]
MI_accept_age[6,2] <- state_stats[23,47]
MI_accept_age[7,2] <- state_stats[23,6]
MI_accept_age[1,4] <- state_stats[23,23]
MI_accept_age[2,4] <- state_stats[23,24]
MI_accept_age[3,4] <- state_stats[23,25]
MI_accept_age[4,4] <- state_stats[23,26]
MI_accept_age[5,4] <- state_stats[23,27]
MI_accept_age[6,4] <- state_stats[23,28]
MI_accept_age[7,4] <- state_stats[23,5]
MI_accept_age$Frequency <- 100*MI_accept_age$Count/MI_accept_age[7,2]
MI_accept_age$Rate <- 100*MI_accept_age$Count/MI_accept_age$Count2
colnames(MI_accept_age) <- c("Age", "Returned Ballots", "Freq. Distribution", "Requested Ballots", "Return Rate")
MI_stats_requested <- MI_stats %>%
select(CountyName, Reg.Voters, Mail.Req.Tot, Pct.Request)
MI_stats_accepted <- MI_stats %>%
select(CountyName, Mail.Req.Tot, Mail.Accept.Tot, Pct.Accept)
MI_stats_rejected <- MI_stats %>%
select(CountyName, Mail.Reject.Tot, Mail.Returned.Tot, Pct.Reject)
```
## {.tabset}
Last Report: `r state_stats[23,9]`
Source: `r state_stats[23,2]`
These Michigan data are compiled from a file of absentee ballot requests purchased from the Michigan Secretary of State's office.
### Returned and Accepted Mail Ballots
Ballots Returned: **`r format(as.numeric(state_stats[23,6]), big.mark =",")`**
Return Rate: **`r paste(round(100*sum(state_stats[23,6], na.rm = T)/sum(state_stats[23,5], na.rm = T), digits = 1),"%", sep = "")`**
``` {r echo = FALSE}
MI_2020g_map_data <- MI_stats
MI_2020g_map_data$fips <- as.character(MI_2020g_map_data$FIPS_NUM)
MI_2020g_map_data <- mutate(MI_2020g_map_data, percent = round(100*Pct.Accept, digits = 1))
mapfile <- download_map_data("countries/us/us-mi-all.js")
mapdata <- get_data_from_map(mapfile)
mapdata$row <- as.integer(rownames(mapdata))
MI_2020g_map_data <- left_join(MI_2020g_map_data, mapdata, by = "fips")
MI_2020g_map_data <- arrange(MI_2020g_map_data, row)
hcmap(map = "countries/us/us-mi-all", data = MI_2020g_map_data,
value = "percent", name = "Percent Accepted", joinBy = "fips") %>%
hc_title(text ="Mail Ballot Return Rates") %>%
hc_subtitle(text = "County plots may not be shaded using the same scale")
```
``` {r echo = FALSE}
datatable(MI_stats_accepted, colnames = c("County", "Mail Ballots Requested", "Mail Ballots Accepted", "Percent Accepted"), rownames = F) %>%
formatPercentage('Pct.Accept', 1) %>%
formatRound(c('Mail.Req.Tot', 'Mail.Accept.Tot'), 0, mark = ",")
```
#### Mail Ballots Returned and Accepted by Age
``` {r echo = FALSE}
kable(MI_accept_age, format.args = list(big.mark = ",",
scientific = FALSE), digits = 1) %>%
kable_styling(bootstrap_options = "striped", full_width = F, position = "left")
```
### Rejected Mail Ballots
Ballots Rejected: **`r format(as.numeric(state_stats[23,48]), big.mark =",")`**
Rejection Rate: **`r paste(round(100*(state_stats[23,48])/(state_stats[23,48]+state_stats[23,6]), digits = 1),"%", sep = "")`**
Michigan election officials have rejected **`r format(as.numeric(state_stats[23,48]), big.mark =",")`** mail ballots.
To calculate mail ballot rejection rates, I divide the number of rejected ballots by the number of accepted ballots *plus* the number of rejected ballots.
``` {r echo = FALSE}
MI_2020g_map_data <- MI_stats
MI_2020g_map_data$fips <- as.character(MI_2020g_map_data$FIPS_NUM)
MI_2020g_map_data <- mutate(MI_2020g_map_data, percent = round(100*Pct.Reject, digits = 1))
mapfile <- download_map_data("countries/us/us-mi-all.js")
mapdata <- get_data_from_map(mapfile)
mapdata$row <- as.integer(rownames(mapdata))
MI_2020g_map_data <- left_join(MI_2020g_map_data, mapdata, by = "fips")
MI_2020g_map_data <- arrange(MI_2020g_map_data, row)
hcmap(map = "countries/us/us-mi-all", data = MI_2020g_map_data,
value = "percent", name = "Percent Rejected", joinBy = "fips") %>%
hc_title(text ="Mail Ballot Rejection Rates") %>%
hc_subtitle(text = "County plots may not be shaded using the same scale")
```
``` {r echo = FALSE}
datatable(MI_stats_rejected, colnames = c("County", "Mail Ballots Rejected", "Mail Ballots Returned (All)", "Percent Rejected"), rownames = F) %>%
formatPercentage('Pct.Reject', 1) %>%
formatRound(c('Mail.Reject.Tot', 'Mail.Returned.Tot'), 0, mark = ",")
```
### Requested Mail Ballots
Ballots Requested: **`r format(as.numeric(state_stats[23,5]), big.mark =",")`**
Request Rate: **`r paste(round(100*state_stats[23,5]/(sum(MI_stats$Reg.Voters)), digits = 1),"%", sep = "")`**
``` {r echo = FALSE}
MI_2020g_map_data <- MI_stats
MI_2020g_map_data$fips <- as.character(MI_2020g_map_data$FIPS_NUM)
MI_2020g_map_data <- mutate(MI_2020g_map_data, percent = round(100*Pct.Request, digits = 1))
mapfile <- download_map_data("countries/us/us-mi-all.js")
mapdata <- get_data_from_map(mapfile)
mapdata$row <- as.integer(rownames(mapdata))
MI_2020g_map_data <- left_join(MI_2020g_map_data, mapdata, by = "fips")
MI_2020g_map_data <- arrange(MI_2020g_map_data, row)
hcmap(map = "countries/us/us-mi-all", data = MI_2020g_map_data,
value = "percent", name = "Percent Requested", joinBy = "fips") %>%
hc_title(text ="Mail Ballot Request Rates") %>%
hc_subtitle(text = "County plots may not be shaded using the same scale")
```
``` {r echo = FALSE}
datatable(MI_stats_requested, colnames = c("County", "Voter Registration", "Mail Ballots Requested", "Percent Requested"), rownames = F) %>%
formatPercentage('Pct.Request', 1) %>%
formatRound(c('Reg.Voters', 'Mail.Req.Tot'), 0, mark = ",")
```