-
Notifications
You must be signed in to change notification settings - Fork 313
/
BiSequencerLM.lua
155 lines (126 loc) · 5.83 KB
/
BiSequencerLM.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
------------------------------------------------------------------------
--[[ BiSequencerLM ]]--
-- Encapsulates forward, backward and merge modules.
-- Input is a sequence (a table) of tensors.
-- Output is a sequence (a table) of tensors of the same length.
-- Applies a `fwd` rnn instance to the first `N-1` elements in the
-- sequence in forward order.
-- Applies the `bwd` rnn in reverse order to the last `N-1` elements
-- (from second-to-last element to first element).
-- Note : you shouldn't stack these for language modeling.
-- Instead, stack each fwd/bwd seqs and encapsulate these.
------------------------------------------------------------------------
local _ = require 'moses'
local BiSequencerLM, parent = torch.class('nn.BiSequencerLM', 'nn.AbstractSequencer')
function BiSequencerLM:__init(forward, backward, merge)
if not torch.isTypeOf(forward, 'nn.Module') then
error"BiSequencerLM: expecting nn.Module instance at arg 1"
end
self.forwardModule = forward
self.backwardModule = backward
if not self.backwardModule then
self.backwardModule = forward:clone()
self.backwardModule:reset()
end
if not torch.isTypeOf(self.backwardModule, 'nn.Module') then
error"BiSequencerLM: expecting nn.Module instance at arg 2"
end
if torch.type(merge) == 'number' then
self.mergeModule = nn.JoinTable(1, merge)
elseif merge == nil then
self.mergeModule = nn.JoinTable(1, 1)
elseif torch.isTypeOf(merge, 'nn.Module') then
self.mergeModule = merge
else
error"BiSequencerLM: expecting nn.Module or number instance at arg 3"
end
if torch.isTypeOf(self.forwardModule, 'nn.AbstractRecurrent') then
self.fwdSeq = nn.Sequencer(self.forwardModule)
else -- assumes a nn.Sequencer or stack thereof
self.fwdSeq = self.forwardModule
end
if torch.isTypeOf(self.backwardModule, 'nn.AbstractRecurrent') then
self.bwdSeq = nn.Sequencer(self.backwardModule)
else
self.bwdSeq = self.backwardModule
end
self.mergeSeq = nn.Sequencer(self.mergeModule)
self._fwd = self.fwdSeq
self._bwd = nn.Sequential()
self._bwd:add(nn.ReverseTable())
self._bwd:add(self.bwdSeq)
self._bwd:add(nn.ReverseTable())
self._merge = nn.Sequential()
self._merge:add(nn.ZipTable())
self._merge:add(self.mergeSeq)
parent.__init(self)
self.modules = {self._fwd, self._bwd, self._merge}
self.output = {}
self.gradInput = {}
end
function BiSequencerLM:updateOutput(input)
assert(torch.type(input) == 'table', 'Expecting table at arg 1')
local nStep = #input
assert(nStep > 1, "Expecting at least 2 elements in table")
-- forward through fwd and bwd rnn in fwd and reverse order
self._fwdOutput = self._fwd:updateOutput(_.first(input, nStep - 1))
self._bwdOutput = self._bwd:updateOutput(_.last(input, nStep - 1))
-- empty outputs
for k,v in ipairs(self.output) do self.output[k] = nil end
-- padding for first and last elements of fwd and bwd outputs, respectively
self._firstStep = nn.rnn.recursiveResizeAs(self._firstStep, self._fwdOutput[1])
nn.rnn.recursiveFill(self._firstStep, 0)
self._lastStep = nn.rnn.recursiveResizeAs(self._lastStep, self._bwdOutput[1])
nn.rnn.recursiveFill(self._lastStep, 0)
-- { { zeros, fwd1, fwd2, ..., fwdN}, {bwd1, bwd2, ..., bwdN, zeros} }
self._mergeInput = {_.clone(self._fwdOutput), _.clone(self._bwdOutput)}
table.insert(self._mergeInput[1], 1, self._firstStep)
table.insert(self._mergeInput[2], self._lastStep)
assert(#self._mergeInput[1] == #self._mergeInput[2])
self.output = self._merge:updateOutput(self._mergeInput)
return self.output
end
function BiSequencerLM:updateGradInput(input, gradOutput)
local nStep = #input
self._mergeGradInput = self._merge:updateGradInput(self._mergeInput, gradOutput)
self._fwdGradInput = self._fwd:updateGradInput(_.first(input, nStep - 1), _.last(self._mergeGradInput[1], nStep - 1))
self._bwdGradInput = self._bwd:updateGradInput(_.last(input, nStep - 1), _.first(self._mergeGradInput[2], nStep - 1))
-- add fwd rnn gradInputs to bwd rnn gradInputs
for i=1,nStep do
if i == 1 then
self.gradInput[1] = self._fwdGradInput[1]
elseif i == nStep then
self.gradInput[nStep] = self._bwdGradInput[nStep-1]
else
self.gradInput[i] = nn.rnn.recursiveCopy(self.gradInput[i], self._fwdGradInput[i])
nn.rnn.recursiveAdd(self.gradInput[i], self._bwdGradInput[i-1])
end
end
return self.gradInput
end
function BiSequencerLM:accGradParameters(input, gradOutput, scale)
local nStep = #input
self._merge:accGradParameters(self._mergeInput, gradOutput, scale)
self._fwd:accGradParameters(_.first(input, nStep - 1), _.last(self._mergeGradInput[1], nStep - 1), scale)
self._bwd:accGradParameters(_.last(input, nStep - 1), _.first(self._mergeGradInput[2], nStep - 1), scale)
end
function BiSequencerLM:accUpdateGradParameters(input, gradOutput, lr)
local nStep = #input
self._merge:accUpdateGradParameters(self._mergeInput, gradOutput, lr)
self._fwd:accUpdateGradParameters(_.first(input, nStep - 1), _.last(self._mergeGradInput[1], nStep - 1), lr)
self._bwd:accUpdateGradParameters(_.last(input, nStep - 1), _.first(self._mergeGradInput[2], nStep - 1), lr)
end
function BiSequencerLM:__tostring__()
local tab = ' '
local line = '\n'
local ext = ' | '
local extlast = ' '
local last = ' ... -> '
local str = torch.type(self)
str = str .. ' {'
str = str .. line .. tab .. '( fwd ): ' .. tostring(self._fwd):gsub(line, line .. tab .. ext)
str = str .. line .. tab .. '( bwd ): ' .. tostring(self._bwd):gsub(line, line .. tab .. ext)
str = str .. line .. tab .. '( merge ): ' .. tostring(self._merge):gsub(line, line .. tab .. ext)
str = str .. line .. '}'
return str
end