From 819b58bcc3e3611855a23d644fe4706c54d17c1c Mon Sep 17 00:00:00 2001 From: Russell O'Connor Date: Tue, 8 Sep 2020 12:14:10 -0400 Subject: [PATCH] Document the Blech32 generator. --- src/blech32.cpp | 74 ++++++++++++++++++++++++------------------------- src/blech32.h | 10 +++---- 2 files changed, 41 insertions(+), 43 deletions(-) diff --git a/src/blech32.cpp b/src/blech32.cpp index 38c1941fdc..7bae1e8c39 100644 --- a/src/blech32.cpp +++ b/src/blech32.cpp @@ -4,22 +4,15 @@ #include -/* - * IMPORTANT NOTE: Comments below may largely pertain for bech32, not blech32. - * Some of these magic constants have changes. - * See liquid_addr.py for compact difference from bech32 - * TODO: Update comments - */ - namespace blech32 { typedef std::vector data; -/** The Blech32 character set for encoding. */ +/** The Bech32 character set for encoding. */ const char* CHARSET = "qpzry9x8gf2tvdw0s3jn54khce6mua7l"; -/** The Blech32 character set for decoding. */ +/** The Bech32 character set for decoding. */ const int8_t CHARSET_REV[128] = { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, @@ -38,8 +31,8 @@ data Cat(data x, const data& y) return x; } -/** This function will compute what 6 5-bit values to XOR into the last 6 input values, in order to - * make the checksum 0. These 6 values are packed together in a single 30-bit integer. The higher +/** This function will compute what 12 5-bit values to XOR into the last 12 input values, in order to + * make the checksum 0. These 12 values are packed together in a single 60-bit integer. The higher * bits correspond to earlier values. */ uint64_t PolyMod(const data& v) { @@ -48,12 +41,13 @@ uint64_t PolyMod(const data& v) // 1*x^5 + v0*x^4 + v1*x^3 + v2*x^2 + v3*x + v4. The implicit 1 guarantees that // [v0,v1,v2,...] has a distinct checksum from [0,v0,v1,v2,...]. - // The output is a 30-bit integer whose 5-bit groups are the coefficients of the remainder of + // The output is a 60-bit integer whose 5-bit groups are the coefficients of the remainder of // v(x) mod g(x), where g(x) is the Blech32 generator, - // x^6 + {29}x^5 + {22}x^4 + {20}x^3 + {21}x^2 + {29}x + {18}. g(x) is chosen in such a way - // that the resulting code is a BCH code, guaranteeing detection of up to 3 errors within a - // window of 1023 characters. Among the various possible BCH codes, one was selected to in - // fact guarantee detection of up to 4 errors within a window of 89 characters. + // x^12 + {31}x^10 + {10}x^9 + {18}x^8 + {31}x^7 + {14}x^6 + // + {18}x^5 + {23}x^3 + {22}x^2 + {4}x + {6} . g(x) is chosen in such a way + // that the resulting code is a BCH code, guaranteeing detection of up to ??? errors within a + // window of ??? characters. Among the various possible BCH codes, one was selected to in + // fact guarantee detection of up to ??? errors within a window of ??? characters. // Note that the coefficients are elements of GF(32), here represented as decimal numbers // between {}. In this finite field, addition is just XOR of the corresponding numbers. For @@ -77,25 +71,31 @@ uint64_t PolyMod(const data& v) // c'(x) = (f(x) * x + v_i) mod g(x) // ((f(x) mod g(x)) * x + v_i) mod g(x) // (c(x) * x + v_i) mod g(x) - // If c(x) = c0*x^5 + c1*x^4 + c2*x^3 + c3*x^2 + c4*x + c5, we want to compute - // c'(x) = (c0*x^5 + c1*x^4 + c2*x^3 + c3*x^2 + c4*x + c5) * x + v_i mod g(x) - // = c0*x^6 + c1*x^5 + c2*x^4 + c3*x^3 + c4*x^2 + c5*x + v_i mod g(x) - // = c0*(x^6 mod g(x)) + c1*x^5 + c2*x^4 + c3*x^3 + c4*x^2 + c5*x + v_i - // If we call (x^6 mod g(x)) = k(x), this can be written as - // c'(x) = (c1*x^5 + c2*x^4 + c3*x^3 + c4*x^2 + c5*x + v_i) + c0*k(x) + // If c(x) = c0*x^11 + c1*x^10 + c2*x^9 + c3*x^8 + c4*x^7 + c5*x^6 + + // c6*x^5 + c7*x^4 + c8*x^3 + c9*x^2 + c10*x + c11, we want to compute + // c'(x) = (c0*x^11 + c1*x^10 + c2*x^9 + c3*x^8 + c4*x^7 + c5*x^6 + + // c6*x^5 + c7*x^4 + c8*x^3 + c9*x^2 + c10*x + c11) * x + v_i mod g(x) + // = c0*x^12 + c1*x^11 + c2*x^10 + c3*x^9 + c4*x^8 + c5*x^7 + + // c6*x^6 + c7*x^5 + c8*x^4 + c9*x^3 + c10*x^2 + c11*x + v_i mod g(x) + // = c0*(x^12 mod g(x)) + c1*x^11 + c2*x^10 + c3*x^9 + c4*x^8 + c5*x^7 + + // c6*x^6 + c7*x^5 + c8*x^4 + c9*x^3 + c10*x^2 + c11*x + v_i + // If we call (x^12 mod g(x)) = k(x), this can be written as + // c'(x) = (c1*x^11 + c2*x^10 + c3*x^9 + c4*x^8 + c5*x^7 + c6*x^6 + + // c7*x^5 + c8*x^4 + c9*x^3 + c10*x^2 + c11 * x + v_i) + c0*k(x) // First, determine the value of c0: - uint8_t c0 = c >> 55; // ELEMENTS: 25->55 + uint8_t c0 = c >> 55; // BLECH32: 25->55 - // Then compute c1*x^5 + c2*x^4 + c3*x^3 + c4*x^2 + c5*x + v_i: - c = ((c & 0x7fffffffffffff) << 5) ^ v_i; // ELEMENTS 0x1ffffff->0x7fffffffffffff + // Then compute c1*x^11 + c2*x^10 + c3*x^9 + c4*x^8 + c5*x^7 + c6*x^6 + + // c7*x^5 + c8*x^4 + c9*x^3 + c10*x^2 + c11 * x + v_i: + c = ((c & 0x7fffffffffffff) << 5) ^ v_i; // BLECH32: 0x1ffffff->0x7fffffffffffff // Finally, for each set bit n in c0, conditionally add {2^n}k(x): - if (c0 & 1) c ^= 0x7d52fba40bd886; // ELEMENTS - if (c0 & 2) c ^= 0x5e8dbf1a03950c; // ELEMENTS - if (c0 & 4) c ^= 0x1c3a3c74072a18; // ELEMENTS - if (c0 & 8) c ^= 0x385d72fa0e5139; // ELEMENTS - if (c0 & 16) c ^= 0x7093e5a608865b; // ELEMENTS + if (c0 & 1) c ^= 0x7d52fba40bd886; // BLECH32: k(x) = {31}x^10 + {10}x^9 + {18}x^8 + {31}x^7 + {14}x^6 + {18}x^5 + {23}x^3 + {22}x^2 + {4}x + {6} + if (c0 & 2) c ^= 0x5e8dbf1a03950c; // BLECH32: {2}k(x) = {23}x^10 + {20}x^9 + {13}x^8 + {23}x^7 + {28}x^6 + {13}x^5 + {7}x^3 + {5}x^2 + {8}x + {12} + if (c0 & 4) c ^= 0x1c3a3c74072a18; // BLECH32: {4}k(x) = {7}x^10 + {1}x^9 + {26}x^8 + {7}x^7 + {17}x^6 + {26}x^5 + {14}x^3 + {10}x^2 + {16}x + {24} + if (c0 & 8) c ^= 0x385d72fa0e5139; // BLECH32: {8}k(x) = {14}x^10 + {2}x^9 + {29}x^8 + {14}x^7 + {11}x^6 + {29}x^5 + {28}x^3 + {20}x^2 + {9}x + {25} + if (c0 & 16) c ^= 0x7093e5a608865b; // BLECH32: {16}k(x) = {28}x^10 + {4}x^9 + {19}x^8 + {28}x^7 + {22}x^6 + {19}x^5 + {17}x^3 + {1}x^2 + {18}x + {27} } return c; } @@ -135,12 +135,12 @@ bool VerifyChecksum(const std::string& hrp, const data& values) data CreateChecksum(const std::string& hrp, const data& values) { data enc = Cat(ExpandHRP(hrp), values); - enc.resize(enc.size() + 12); // ELEMENTS: Append 6->12 zeroes - uint64_t mod = PolyMod(enc) ^ 1; // Determine what to XOR into those 6 zeroes. - data ret(12); // ELEMENTS: 6->12 - for (size_t i = 0; i < 12; ++i) { // ELEMENTS: 6->12 + enc.resize(enc.size() + 12); // BLECH32: Append 6->12 zeroes + uint64_t mod = PolyMod(enc) ^ 1; // Determine what to XOR into those 12 zeroes. + data ret(12); // BLECH32: 6->12 + for (size_t i = 0; i < 12; ++i) { // BLECH32: 6->12 // Convert the 5-bit groups in mod to checksum values. - ret[i] = (mod >> (5 * (11 - i))) & 31; // ELEMENTS: 5->11 + ret[i] = (mod >> (5 * (11 - i))) & 31; // BLECH32: 5->11 } return ret; } @@ -168,7 +168,7 @@ std::pair Decode(const std::string& str) { } if (lower && upper) return {}; size_t pos = str.rfind('1'); - if (str.size() > 1000 || pos == str.npos || pos == 0 || pos + 13 > str.size()) { // ELEMENTS: 90->1000, 7->13 + if (str.size() > 1000 || pos == str.npos || pos == 0 || pos + 13 > str.size()) { // BLECH32: 90->1000, 7->13 return {}; } data values(str.size() - 1 - pos); @@ -188,7 +188,7 @@ std::pair Decode(const std::string& str) { if (!VerifyChecksum(hrp, values)) { return {}; } - return {hrp, data(values.begin(), values.end() - 12)}; + return {hrp, data(values.begin(), values.end() - 12)}; // BLECH32: 6->12 } } // namespace blech32 diff --git a/src/blech32.h b/src/blech32.h index 775c207e66..8706ee56e6 100644 --- a/src/blech32.h +++ b/src/blech32.h @@ -2,12 +2,10 @@ // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. -// Bech32 is a string encoding format used in newer address types. +// Blech32 is a string encoding format used in newer address types. // The output consists of a human-readable part (alphanumeric), a // separator character (1), and a base32 data section, the last -// 6 characters of which are a checksum. -// -// For more information, see BIP 173. +// 12 characters of which are a checksum. #ifndef BITCOIN_BLECH32_H #define BITCOIN_BLECH32_H @@ -19,10 +17,10 @@ namespace blech32 { -/** Encode a Bech32 string. Returns the empty string in case of failure. */ +/** Encode a Blech32 string. Returns the empty string in case of failure. */ std::string Encode(const std::string& hrp, const std::vector& values); -/** Decode a Bech32 string. Returns (hrp, data). Empty hrp means failure. */ +/** Decode a Blech32 string. Returns (hrp, data). Empty hrp means failure. */ std::pair> Decode(const std::string& str); /// Exported for testing.