forked from rasbt/machine-learning-book
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathneuralnet.py
109 lines (74 loc) · 3.27 KB
/
neuralnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
import numpy as np
##########################
### MODEL
##########################
def sigmoid(z):
return 1. / (1. + np.exp(-z))
def int_to_onehot(y, num_labels):
ary = np.zeros((y.shape[0], num_labels))
for i, val in enumerate(y):
ary[i, val] = 1
return ary
class NeuralNetMLP:
def __init__(self, num_features, num_hidden, num_classes, random_seed=123):
super().__init__()
self.num_classes = num_classes
# hidden
rng = np.random.RandomState(random_seed)
self.weight_h = rng.normal(
loc=0.0, scale=0.1, size=(num_hidden, num_features))
self.bias_h = np.zeros(num_hidden)
# output
self.weight_out = rng.normal(
loc=0.0, scale=0.1, size=(num_classes, num_hidden))
self.bias_out = np.zeros(num_classes)
def forward(self, x):
# Hidden layer
# input dim: [n_hidden, n_features] dot [n_features, n_examples] .T
# output dim: [n_examples, n_hidden]
z_h = np.dot(x, self.weight_h.T) + self.bias_h
a_h = sigmoid(z_h)
# Output layer
# input dim: [n_classes, n_hidden] dot [n_hidden, n_examples] .T
# output dim: [n_examples, n_classes]
z_out = np.dot(a_h, self.weight_out.T) + self.bias_out
a_out = sigmoid(z_out)
return a_h, a_out
def backward(self, x, a_h, a_out, y):
#########################
### Output layer weights
#########################
# onehot encoding
y_onehot = int_to_onehot(y, self.num_classes)
# Part 1: dLoss/dOutWeights
## = dLoss/dOutAct * dOutAct/dOutNet * dOutNet/dOutWeight
## where DeltaOut = dLoss/dOutAct * dOutAct/dOutNet
## for convenient re-use
# input/output dim: [n_examples, n_classes]
d_loss__d_a_out = 2.*(a_out - y_onehot) / y.shape[0]
# input/output dim: [n_examples, n_classes]
d_a_out__d_z_out = a_out * (1. - a_out) # sigmoid derivative
# output dim: [n_examples, n_classes]
delta_out = d_loss__d_a_out * d_a_out__d_z_out # "delta (rule) placeholder"
# gradient for output weights
# [n_examples, n_hidden]
d_z_out__dw_out = a_h
# input dim: [n_classes, n_examples] dot [n_examples, n_hidden]
# output dim: [n_classes, n_hidden]
d_loss__dw_out = np.dot(delta_out.T, d_z_out__dw_out)
d_loss__db_out = np.sum(delta_out, axis=0)
#################################
# Part 2: dLoss/dHiddenWeights
## = DeltaOut * dOutNet/dHiddenAct * dHiddenAct/dHiddenNet * dHiddenNet/dWeight
# [n_classes, n_hidden]
d_z_out__a_h = self.weight_out
# output dim: [n_examples, n_hidden]
d_loss__a_h = np.dot(delta_out, d_z_out__a_h)
# [n_examples, n_hidden]
d_a_h__d_z_h = a_h * (1. - a_h) # sigmoid derivative
# [n_examples, n_features]
d_z_h__d_w_h = x
# output dim: [n_hidden, n_features]
d_loss__d_w_h = np.dot((d_loss__a_h * d_a_h__d_z_h).T, d_z_h__d_w_h)
d_loss__d_b_h = np.sum((d_loss__a_h * d_a_h__d_z_h), axis=0)
return d_loss__dw_out, d_loss__db_out, d_loss__d_w_h, d_loss__d_b_h