-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathTTGO-T-Beam-TTN-LoRa-GPS-Vehicle-Tracker.ino
366 lines (324 loc) · 12.8 KB
/
TTGO-T-Beam-TTN-LoRa-GPS-Vehicle-Tracker.ino
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
/*******************************************************************************
* Based on the LMIC example by 2015 Thomas Telkamp and Matthijs Kooijman Copyright (c)
*
* This uses OTAA, where a DevEUI and
* application key is configured, while the DevAddr and session keys are
* assigned/generated in the over-the-air-activation procedure).
*
* Note: LoRaWAN per sub-band duty-cycle limitation is enforced (1% in
* g1, 0.1% in g2), but not the TTN fair usage policy (which is probably
* violated by this sketch when left running for longer)!
*
* To use this sketch, first register your application and device with
* the things network, to set or generate a DevAddr, NwkSKey and
* AppSKey. Each device should have their own unique values for these
* fields.
*
*Rev1.1 of the TTGO T-Beam uses the AXP192
*On earlier and simpler ESP32-based TTGO boards, BUILTIN_LED has to be connected to ESP pins, 2 or 14. Or 17, as wiki said. But it’s a harsh lie :)
Truth is: T-Beam uses auxillary power manager, hardware AXP192. Look for a second on your board, you’ll easily find one.
axp.setChgLEDMode(AXP20X_LED_OFF); // LED off
axp.setChgLEDMode(AXP20X_LED_BLINK_1HZ); // 1blink/sec, low rate
axp.setChgLEDMode(AXP20X_LED_BLINK_4HZ); // 4blink/sec, high rate
axp.setChgLEDMode(AXP20X_LED_LOW_LEVEL); // LED full on
*******************************************************************************/
#include <lmic.h>
#include <hal/hal.h>
#include <SPI.h>
#include <CayenneLPP.h>
#include <Wire.h>
#include <Adafruit_BME280.h>
#include <esp_sleep.h>
#include <WiFi.h>
#include <axp20x.h>
AXP20X_Class axp;
#include "gps.h"
// #define DEBUG 1 // for real use comment this out
#define I2C_SDA 21 // SDA1
#define I2C_SCL 22 // SCL1
#define SEALEVELPRESSURE_HPA (1013.25) // this should be set according to the weather forecast
#define BME280_ADDRESS 0x76 // you can use I2C scanner demo to find your BME280 I2C address
CayenneLPP lpp(51); // here we will construct Cayenne Low Power Payload (LPP) - see https://community.mydevices.com/t/cayenne-lpp-2-0/7510
gps gps; // class that is encapsulating additional GPS functionality
Adafruit_BME280 bme(I2C_SDA, I2C_SCL); // these pins are defined above
double lat, lon, alt, kmph; // GPS data are saved here: Latitude, Longitude, Altitude, Speed in km/h
float tmp, hum, pressure, alt_barometric; // BME280 data are saved here: Temperature, Humidity, Pressure, Altitude calculated from atmospheric pressure
int sats; // GPS satellite count
char s[32]; // used to sprintf for Serial output
bool status; // status after reading from BME280
float vBat; // battery voltage
long nextPacketTime;
// This EUI must be in little-endian format, so least-significant-byte
// first. When copying an EUI from ttnctl output, this means to reverse
// the bytes. For TTN issued EUIs the last bytes should be 0xD5, 0xB3,
// 0x70.
static const u1_t PROGMEM APPEUI[8]={ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x70 };
void os_getArtEui (u1_t* buf) { memcpy_P(buf, APPEUI, 8);}
// This should also be in little endian format, see above.
static const u1_t PROGMEM DEVEUI[8]={ 0x2F, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
void os_getDevEui (u1_t* buf) { memcpy_P(buf, DEVEUI, 8);}
// This key should be in big endian format (or, since it is not really a
// number but a block of memory, endianness does not really apply). In
// practice, a key taken from ttnctl can be copied as-is.
// The key shown here is the semtech default key.
static const u1_t PROGMEM APPKEY[16] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01 };
void os_getDevKey (u1_t* buf) { memcpy_P(buf, APPKEY, 16);}
static osjob_t sendjob; // callback to LoRa send packet
void getBME280Values(void); // declaration for function below
void do_send(osjob_t* j); // declaration of send function
// Schedule TX every this many seconds (might become longer due to duty cycle limitations).
#ifdef DEBUG
const unsigned int TX_INTERVAL = 45;
#else
const unsigned int TX_INTERVAL = 600;
#endif
// Those variables keep their values after software restart or wakeup from sleep, not after power loss or hard reset !
RTC_NOINIT_ATTR int RTCseqnoUp, RTCseqnoDn;
RTC_NOINIT_ATTR u4_t otaaDevAddr;
RTC_NOINIT_ATTR u1_t otaaNetwKey[16];
RTC_NOINIT_ATTR u1_t otaaApRtKey[16];
const unsigned int GPS_FIX_RETRY_DELAY = 15; // Wait this many seconds when no GPS fix is received to retry
const unsigned int SHORT_TX_INTERVAL = 30; // When moving, send packets every SHORT_TX_INTERVAL seconds
const double MOVING_KMPH = 4; // If speed in km/h is higher than MOVING_HMPH, we assume that car is moving
// Pin mapping for REV v1.1 TTGO T-Beam
const lmic_pinmap lmic_pins = {
.nss = 18,
.rxtx = LMIC_UNUSED_PIN,
.rst = 23,
.dio = {26, 33, 32},
};
void getBatteryVoltage() {
vBat = axp.getBattVoltage() / 1000;
Serial.print("Battery voltage: ");
Serial.print(vBat);
Serial.println("V");
}
void getBME280Values() {
if (!status) { // we don't have BME280 connection, clear the values and exit
tmp = 0.0f;
pressure = 0.0f;
alt_barometric = 0.0f;
hum = 0.0f;
return;
}
tmp = bme.readTemperature();
pressure = bme.readPressure() / 100.0F;
alt_barometric = bme.readAltitude(SEALEVELPRESSURE_HPA);
hum = bme.readHumidity();
Serial.print(F("Temperature = "));
Serial.print(tmp);
Serial.print("C, ");
Serial.print("Pressure = ");
Serial.print(pressure);
Serial.print("hPa, ");
Serial.print("Approx. Altitude = ");
Serial.print(alt_barometric);
Serial.print("m, ");
Serial.print("Humidity = ");
Serial.print(hum);
Serial.println("%");
delay(100);
}
void storeFrameCounters()
{
RTCseqnoUp = LMIC.seqnoUp;
RTCseqnoDn = LMIC.seqnoDn;
sprintf(s, "Counters stored as %d/%d", LMIC.seqnoUp, LMIC.seqnoDn);
Serial.println(s);
}
void restoreFrameCounters()
{
LMIC.seqnoUp = RTCseqnoUp;
LMIC.seqnoDn = RTCseqnoDn;
sprintf(s, "Restored counters as %d/%d", LMIC.seqnoUp, LMIC.seqnoDn);
Serial.println(s);
}
void setOrRestorePersistentCounters()
{
esp_reset_reason_t reason = esp_reset_reason();
if ((reason != ESP_RST_DEEPSLEEP) && (reason != ESP_RST_SW))
{
Serial.println(F("Counters both set to 0"));
LMIC.seqnoUp = 0;
LMIC.seqnoDn = 0;
}
else
{
restoreFrameCounters();
}
}
void onEvent (ev_t ev) {
Serial.print(os_getTime());
Serial.print(": ");
switch(ev) {
case EV_SCAN_TIMEOUT:
Serial.println(F("EV_SCAN_TIMEOUT"));
break;
case EV_BEACON_FOUND:
Serial.println(F("EV_BEACON_FOUND"));
break;
case EV_BEACON_MISSED:
Serial.println(F("EV_BEACON_MISSED"));
break;
case EV_BEACON_TRACKED:
Serial.println(F("EV_BEACON_TRACKED"));
break;
case EV_JOINING:
Serial.println(F("EV_JOINING"));
axp.setChgLEDMode(AXP20X_LED_LOW_LEVEL); // LED full on during join
break;
case EV_JOINED:
Serial.println(F("EV_JOINED"));
otaaDevAddr = LMIC.devaddr;
memcpy_P(otaaNetwKey, LMIC.nwkKey, 16);
memcpy_P(otaaApRtKey, LMIC.artKey, 16);
sprintf(s, "got devaddr = 0x%X", LMIC.devaddr);
axp.setChgLEDMode(AXP20X_LED_BLINK_1HZ); // 1blink/sec, low rate LED blink between joing and first complete message transmission
Serial.println(s);
break;
case EV_RFU1:
Serial.println(F("EV_RFU1"));
break;
case EV_JOIN_FAILED:
Serial.println(F("EV_JOIN_FAILED"));
break;
case EV_REJOIN_FAILED:
Serial.println(F("EV_REJOIN_FAILED"));
break;
case EV_TXCOMPLETE:
Serial.println(F("EV_TXCOMPLETE (includes waiting for RX windows)"));
if (LMIC.dataLen) {
Serial.println(F("Received "));
Serial.println(LMIC.dataLen);
Serial.println(F(" bytes of payload"));
}
// Schedule next transmission
nextPacketTime = (kmph > MOVING_KMPH ? SHORT_TX_INTERVAL : TX_INTERVAL); // depend on current GPS speed
os_setTimedCallback(&sendjob, os_getTime() + sec2osticks(nextPacketTime), do_send);
Serial.print(F("Next LoRa packet scheduled in "));
Serial.print(nextPacketTime);
Serial.println(F(" seconds!"));
storeFrameCounters();
axp.setChgLEDMode(AXP20X_LED_OFF); // LED off after (first) complete message transmission
break;
case EV_LOST_TSYNC:
Serial.println(F("EV_LOST_TSYNC"));
break;
case EV_RESET:
Serial.println(F("EV_RESET"));
break;
case EV_RXCOMPLETE:
// data received in ping slot
Serial.println(F("EV_RXCOMPLETE"));
break;
case EV_LINK_DEAD:
Serial.println(F("EV_LINK_DEAD"));
break;
case EV_LINK_ALIVE:
Serial.println(F("EV_LINK_ALIVE"));
break;
default:
Serial.println(F("Unknown event"));
break;
}
}
void do_send(osjob_t* j) {
getBatteryVoltage();
getBME280Values();
// Check if there is not a current TX/RX job running
if (LMIC.opmode & OP_TXRXPEND)
{
Serial.println(F("OP_TXRXPEND, not sending"));
}
else
{
if (gps.checkGpsFix())
{
// Prepare upstream data transmission at the next possible time.
gps.getLatLon(&lat, &lon, &alt, &kmph, &sats);
// we have all the data that we need, let's construct LPP packet for Cayenne
lpp.reset();
lpp.addGPS(1, lat, lon, alt);
// lpp.addTemperature(2, tmp);
// lpp.addRelativeHumidity(3, hum);
// lpp.addBarometricPressure(4, pressure);
lpp.addAnalogInput(5, vBat);
lpp.addAnalogInput(6, kmph);
lpp.addAnalogInput(7, sats);
//lpp.addAnalogInput(8, alt_barometric); // altitude from barometric sensor
// read LPP packet bytes, write them to FIFO buffer of the LoRa module, queue packet to send to TTN
LMIC_setTxData2(1, lpp.getBuffer(), lpp.getSize(), 0);
Serial.print(lpp.getSize());
Serial.println(F(" bytes long LPP packet queued."));
}
else
{
// try again in a few 'GPS_FIX_RETRY_DELAY' seconds...
os_setTimedCallback(&sendjob, os_getTime() + sec2osticks(GPS_FIX_RETRY_DELAY), do_send);
}
}
// Next TX is scheduled after TX_COMPLETE event.
}
void setup() {
Serial.begin(115200);
Serial.println(F("Starting"));
Wire.begin(21, 22);
if (!axp.begin(Wire, AXP192_SLAVE_ADDRESS)) {
Serial.println("AXP192 Begin PASS");
} else {
Serial.println("AXP192 Begin FAIL");
}
axp.setPowerOutPut(AXP192_LDO2, AXP202_ON);
axp.setPowerOutPut(AXP192_LDO3, AXP202_ON);
axp.setPowerOutPut(AXP192_DCDC2, AXP202_ON);
axp.setPowerOutPut(AXP192_EXTEN, AXP202_ON);
axp.setPowerOutPut(AXP192_DCDC1, AXP202_ON);
/*Enable AXP ADC function*/
axp.adc1Enable(AXP202_VBUS_VOL_ADC1 |
AXP202_VBUS_CUR_ADC1 |
AXP202_BATT_CUR_ADC1 |
AXP202_BATT_VOL_ADC1,
true);
Serial.println("AXP192 Begin FAIL");
//Turn off WiFi and Bluetooth
WiFi.mode(WIFI_OFF);
btStop();
gps.init();
status = bme.begin(BME280_ADDRESS);
if (!status) {
Serial.println(F("Could not find a valid BME280 sensor, check wiring!"));
} else {
Serial.println(F("BME280 initialized sucessfully"));
delay(1000); // stabilize sensor readings
}
if (status) {
Serial.println(F("BMP/BME280: normal mode, 16x pressure / 2x temperature / 1x humidity oversampling,"));
Serial.println(F("0.5ms standby period, filter 16x"));
bme.setSampling(Adafruit_BME280::MODE_NORMAL,
Adafruit_BME280::SAMPLING_X2, // temperature
Adafruit_BME280::SAMPLING_X16, // pressure
Adafruit_BME280::SAMPLING_X1, // humidity
Adafruit_BME280::FILTER_X16,
Adafruit_BME280::STANDBY_MS_0_5 );
delay(500);
}
Serial.println(F("Initializing LoRa module"));
// Don't ask for ACKs: Disable link check validation
LMIC_setLinkCheckMode(0);
// Set the data rate to Spreading Factor 7. This is the fastest supported rate for 125 kHz channels, and it
// minimizes air time and battery power. Set the transmission power to 14 dBi (25 mW).
LMIC_setDrTxpow(DR_SF7,14);
// This must be done AFTER calling LMIC_setSession !
setOrRestorePersistentCounters();
// LMIC init
os_init();
// Reset the MAC state. Session and pending data transfers will be discarded.
LMIC_reset();
Serial.println(F("Ready to track"));
// Start job (sending automatically starts OTAA too)
axp.setChgLEDMode(AXP20X_LED_BLINK_4HZ); // 4blink/sec, high rate
do_send(&sendjob);
}
void loop() {
os_runloop_once();
}