-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathminati54_v1.m
149 lines (135 loc) · 3.55 KB
/
minati54_v1.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
clc; clear all; close all
% Step size
dt = 5e-8;
% duration
seconds = 30;
% iteration
steps = floor(seconds / dt);
% Component value
Vcc = 5;
R = 226;
L1 = 150;
L2 = 68;
L3 = 15;
C = 470e-6;
C1 = 50e-6;
C2 = 1e-8;
C3 = 10e-8;
% Initial condition
Vc = 0.76;
V1 = 50e-6;
V2 = 1e-8;
V3 = 10e-8;
Il1 = 2e-4;
Il2 = -2e-4;
Il3 = 2e-4;
Vbc1 = 0;
Vbc2 = -1e-4;
Vbe1 = 0;
Vbe2 = 0.76;
% Static Allocation
save_step = 10000; count = 0; i = 0;
x = NaN(floor(steps / save_step), 1);
y = NaN(floor(steps / save_step), 1);
z = NaN(floor(steps / save_step), 1);
xy = NaN(floor(steps / save_step), 1);
fprintf('[+] Start Simulation \n')
% Solve the system
for iteration = 1 : steps - 1
% Euler Method
Vc_new = Vc + C^(-1) * (g(Vbe2, Vbc2) - f(Vbe2, Vbc2) + Il3) * dt;
V1_new = V1 + C1^(-1) * (f(Vbe2, Vbc2) - g(Vbe2, Vbc2) - g(Vbe1, Vbc1) - Il1 - Il2 - Il3) * dt;
V2_new = V2 + C2^(-1) * (f(Vbe2, Vbc2) - g(Vbe2, Vbc2) - f(Vbe1, Vbc1) - Il1) * dt;
V3_new = V3 + C3^(-1) * ((Vcc - V3) / R - g(Vbe2, Vbc2) - Il3) * dt;
Il1_new = Il1 + L1^(-1) * (V1 + V2) * dt;
Il2_new = Il2 + L2^(-1) * (V1) * dt;
Il3_new = Il3 + L3^(-1) * (V3 + V1 - Vc) * dt;
% NPN update
Vbe1 = V2_new;
Vbc1 = -V1_new;
Vbe2 = Vc_new - V1_new - V2_new;
Vbc2 = Vc_new - V1_new - V2_new - V3_new;
% Store
if count == save_step
count = 0;
i = i + 1;
x(i) = Vbe2 - Vbc2;
y(i) = Vbe2;
z(i) = Vc;
xy(i) = Vbc1;
end
count = count + 1;
% Update state
Vc = Vc_new;
V1 = V1_new;
V2 = V2_new;
V3 = V3_new;
Il1 = Il1_new;
Il2 = Il2_new;
Il3 = Il3_new;
end
fprintf('[+] End Simulation \n');
% PLOT
figure(1);
t = (1 : floor(steps / save_step)) * dt;
subplot(4, 1, 1); plot(t, x, 'k'); title('V_{dd} - V_R');
subplot(4, 1, 2); plot(t, y, 'k'); title('V_{BE2}');
subplot(4, 1, 3); plot(t, xy, 'k'); title('V_{BC1}');
subplot(4, 1, 4); plot(t, z, 'k'); title('V_{C}');
drawnow;
figure(3)
NFFT = 2^14; %NFFT-point DFT
Z = fft(z, NFFT); %compute DFT using FFT
nVals = 0 : 100 - 1; %DFT Sample points
plot(nVals,abs(real(Z(1:100))), 'k');
grid on
axis([0 inf 0 400])
title('FFT');
xlabel('Sample points (N-point DFT)')
ylabel('DFT Values');
for delay = 50 : 1 : 150
figure(2); plot(z(1:end-delay,1),z(delay+1:end,1), 'k'); grid on; ylabel('v(t + \theta) [V]'); xlabel('v(t) [V]'); title('Attractor V_{C}');
annotation('textbox',...
[0.17 0.2 0.15 0.05],...
'String',{['\theta = ' num2str(delay)]},...
'FontSize',12,...
'FontName','Arial',...
'BackgroundColor',[1 1 1],...
'Color',[0 0 0]);
pause(0.2);
end
for delay = 50 : 1 : 100
figure(4)
plot(xy(1:end-delay,1),xy(delay+1:end,1), 'k');
grid on; ylabel('v(t + \theta) [V]'); xlabel('v(t) [V]'); title('Attractor V_{BC1}'); annotation('textbox',...
[0.17 0.2 0.15 0.05],...
'String',{['\theta = ' num2str(delay)]},...
'FontSize',12,...
'FontName','Arial',...
'BackgroundColor',[1 1 1],...
'Color',[0 0 0]);
pause(0.2);
end
% Nonlinear Function
function Ie = f(Vbe, Vbc)
Is = 10e-15; Vt = 0.0259; DROP = 0.1; betaF = 145.76; betaR = 0.1001;
if Vbe > 0
Ie = (Is / betaF) * (exp((Vbe - DROP) / Vt)) + ...
Is * (exp((Vbe - DROP) / Vt) - exp((Vbc - DROP) / Vt));
elseif Vbe <= 0
Ie = Is * (exp((Vbe - DROP) / Vt) - exp((Vbc - DROP) / Vt));
else
fprintf('[!] Error\n');
end
end
function Ic = g(Vbe, Vbc)
Is = 10e-15; Vt = 0.0259; DROP = 0.1; betaF = 145.76; betaR = 0.1001;
if Vbc > 0
Ic = -(Is / betaR) * (exp((Vbc - DROP) / Vt)) + ...
Is * (exp((Vbe - DROP) / Vt) - exp((Vbc - DROP) / Vt));
elseif Vbc <= 0
Ic = Is * (exp((Vbe - DROP) / Vt) - exp((Vbc - DROP) / Vt));
else
print('[!] Error\n')
end
end