-
Notifications
You must be signed in to change notification settings - Fork 6
/
testgen.js
451 lines (422 loc) · 16.1 KB
/
testgen.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
/*
* Copyright (c) 2021 Shortcut Labs AB
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
// execute "node testgen.js > tests.c", with a nodejs version >= 10.4
const assert = require('assert');
const https = require('https');
const crypto = require('crypto');
// Simple ECDSA implementation that is correct, but slow and not side channel safe. Only used to generate test data.
q = 2n**256n - 2n**224n + 2n**192n + 2n**96n - 1n
G = {x: 0x6b17d1f2e12c4247f8bce6e563a440f277037d812deb33a0f4a13945d898c296n, y: 0x4fe342e2fe1a7f9b8ee7eb4a7c0f9e162bce33576b315ececbb6406837bf51f5n}
n = 0xffffffff00000000ffffffffffffffffbce6faada7179e84f3b9cac2fc632551n
function div2(v, mod) {
return (v & 1n) ? (v + mod) >> 1n : v >> 1n;
}
// https://eprint.iacr.org/2014/130.pdf, algorithm 10
function pointDbl(p) {
t1 = p.z**2n
t2 = p.x + t1
t1 = p.x - t1
t1 = t1 * t2
t2 = div2(t1, q)
t1 = t1 + t2
t2 = p.y**2n
t3 = p.x * t2
t4 = t1**2n
t4 = t4 - t3
x = t4 - t3
z = p.y * p.z
t2 = t2**2n
t4 = t3 - x
t1 = t1 * t4
y = t1 - t2
return {x: x % q, y: y % q, z: z % q}
}
// https://eprint.iacr.org/2014/130.pdf, algorithm 13
function pointAdd(p1, p2) {
if (p1.z === 0n) {
return {x: p2.x, y: p2.y, z: 1n}
}
t1 = p1.z**2n
t2 = p1.z * t1
t1 = t1 * p2.x
t2 = t2 * p2.y
t1 = t1 - p1.x
t2 = t2 - p1.y
t1 %= q
t2 %= q
if (t1 === 0n) {
if (t2 === 0n) {
return pointDbl(p1)
} else {
return {x: 0n, y: 0n, z: 0n}
}
}
z = p1.z * t1
t3 = t1**2n
t4 = t1 * t3
t3 = p1.x * t3
t1 = t3 + t3
x = t2**2n
x = x - t1
x = x - t4
t3 = t3 - x
t3 = t2 * t3
t4 = t4 * p1.y
y = t3 - t4
return {x: x % q, y: y % q, z: z % q}
}
// "D. Hankerson, A. Menezes, and S. Vanstone, Guide to
// Elliptic Curve Cryptography, 2004" Algorithm 2.22
// (Extended Stein's GCD algorithm)
function modInv(val, mod) {
if (val === 0n) {
return 0n;
}
let u = val, v = mod;
let x1 = 1n, x2 = 0n;
while (u !== 1n && v !== 1n) {
while ((u & 1n) === 0n) {
u = u >> 1n;
x1 = div2(x1, mod);
}
while ((v & 1n) === 0n) {
v = v >> 1n;
x2 = div2(x2, mod);
}
if (u >= v) {
u = u - v;
x1 = x1 - x2;
if (x1 < 0n) {
x1 = x1 + mod;
}
} else {
v = v - u;
x2 = x2 - x1;
if (x2 < 0n) {
x2 = x2 + mod;
}
}
}
return u === 1n ? x1 : x2;
}
function scalarmult(scalar, p) {
// this implementation does not verify that p lies on the curve
if (scalar === 0n) {
return {x: 0n, y: 0n};
}
let neg = scalar < 0n;
if (neg) {
scalar = -scalar;
}
let result = {x: 0n, y: 0n, z: 0n};
const numBits = scalar.toString(2).length;
for (let i = numBits - 1; i >= 0; i--) {
result = pointDbl(result);
if (scalar & (1n << BigInt(i))) {
result = pointAdd(result, p);
}
}
if (neg) {
result.y = -result.y;
}
result = {x: (result.x + q) % q, y: (result.y + q) % q, z: (result.z + q) % q};
const zInv = modInv(result.z, q);
return {x: (result.x * zInv**2n) % q, y: (result.y * zInv**3n) % q};
}
function sign(z, privKey, k) {
if ((k < 1n || k >= n) || (privKey < 1n || privKey >= n)) {
return null;
}
const point = scalarmult(k, G);
const r = point.x % n;
if (r === 0n) {
return null;
}
const s = modInv(k, n) * (z + r * privKey) % n;
if (s === 0n) {
return null;
}
return {r: r, s: s};
}
function bufferToBigInt(b) {
return BigInt('0x' + b.toString('hex'));
}
function bigIntToBuffer(v, len) {
let str = v.toString(16);
if (str.length & 1) {
str = '0' + str;
}
let buf = Buffer.from(str, 'hex');
if (buf.length < len) {
buf = Buffer.concat([Buffer.alloc(len - buf.length), buf]);
}
return buf;
}
function sha256(v) {
return crypto.createHash('sha256').update(v).digest();
}
function httpsRequest(url) {
return new Promise((resolve, reject) => {
let data = '';
https.get(url, (res) => {
res.on('data', (chunk) => {
data += chunk;
});
res.on('end', () => {
resolve(data);
});
res.on('error', (error) => {
reject(error);
});
});
});
}
function toUIntArr(v, size, resizeLen) {
const len = v.length / size;
let res = [];
for (let i = 0; i < len; i++) {
res.push('0x' + v.slice(i * size, (i + 1) * size).toString('hex'));
}
for (let i = 0; i < res.length / resizeLen; i++) {
const start = i * resizeLen;
for (let j = 0; j < resizeLen / 2; j++) {
const v1 = res[start + j];
const v2 = res[start + resizeLen - 1 - j];
res[start + j] = v2;
res[start + resizeLen - 1 - j] = v1;
}
}
return '{' + res.join(',') + '}';
}
async function ecdhTests() {
let data = await httpsRequest('https://raw.githubusercontent.com/google/wycheproof/master/testvectors/ecdh_secp256r1_test.json');
data = JSON.parse(data);
const testGroups = data.testGroups;
const newTests = [];
testGroups.forEach((testGroup) => {
testGroup.tests.forEach((test) => {
let pub = Buffer.from(test.public, 'hex');
const prefix = Buffer.from('301306072a8648ce3d020106082a8648ce3d03010703', 'hex');
if (pub[0] !== 0x30 || pub[1] !== pub.length - 2 || !pub.slice(2, 24).equals(prefix) || pub[24] !== pub.length - 25 || pub[25] !== 0x00 || (pub[24] !== 66 && pub[24] !== 34)) {
if (test.flags.some(f => f === 'UnnamedCurve' || f === 'InvalidAsn')) {
return;
}
assert.equal(test.result, 'invalid', test.tcId);
//console.log(test.tcId + ' ' + test.comment);
return;
}
pub = pub.slice(26);
if (!((pub.length == 65 && pub[0] == 0x04) || (pub.length == 66 && pub[0] != 0x04))) {
test.result = 'invalid';
test.shared = '';
}
if (pub.equals(Buffer.from('042998705a9a71c783e1cf4397dbed9375a44e4cb88053594b0ea982203b6363b063d0af4971d1c3813db3c7799f9f9324cbe1b90054c81b510ff6297160add6eb', 'hex'))) {
// Bug in test case #454, should not be accepted, but invalid, since point does not lie on curve
test.result = 'invalid';
test.shared = '';
}
let priv = Buffer.from(test.private, 'hex');
if (priv.length > 32) {
if (priv.length !== 33 || priv[0] !== 0x00 || priv[1] < 0x80) {
assert.equal(test.result, 'invalid', test.tcId);
//console.log(test.tcId + ' ' + test.comment);
return;
}
priv = priv.slice(1);
} else if (priv.length < 32) {
priv = Buffer.concat([Buffer.alloc(32 - priv.length), priv]);
}
const shared = Buffer.from(test.shared, 'hex');
assert.equal(shared.length === 32, test.result !== 'invalid');
newTests.push({tcId: test.tcId, pub: pub, priv: priv, shared: shared, result: test.result !== 'invalid'});
});
});
const pubs = {}; let pubsSize = 0; const pubsArr = [];
const privs = {}; let privsSize = 0; const privsArr = [];
const shareds = {}; let sharedsSize = 0; const sharedsArr = [];
newTests.forEach((test) => {
if (!(test.pub.toString('hex') in pubs)) {pubs[test.pub.toString('hex')] = pubsSize++; pubsArr.push(test.pub);}
if (!(test.priv.toString('hex') in privs)) {privs[test.priv.toString('hex')] = privsSize++; privsArr.push(test.priv);}
if (test.shared.length && !(test.shared.toString('hex') in shareds)) {shareds[test.shared.toString('hex')] = sharedsSize++; sharedsArr.push(test.shared);}
});
const resArr = newTests.map((test) => {
return ['pub_' + pubs[test.pub.toString('hex')], 'priv_' + privs[test.priv.toString('hex')], test.shared.length ? 'shared_' + shareds[test.shared.toString('hex')] : 'NULL', test.pub.length, test.result ? 1 : 0 /*, test.tcId*/];
});
const invalidScalars = [0n, n, n + 1n, n + 2n, 2n**256n - 2n, 2n**256n - 1n].map(v => toUIntArr(bigIntToBuffer(v, 32), 4, 8));
pubsArr.forEach((v, i) => console.log('static const uint8_t pub_' + i + '[] = ' + toUIntArr(v, 1, 1) + ';'));
privsArr.forEach((v, i) => console.log('static const uint32_t priv_' + i + '[] = ' + toUIntArr(v, 4, 8) + ';'));
sharedsArr.forEach((v, i) => console.log('static const uint8_t shared_' + i + '[] = ' + toUIntArr(v, 1, 1) + ';'));
privsArr.forEach((v, i) => {
const pub = scalarmult(bufferToBigInt(v), G);
console.log('static const uint32_t pub_for_priv_' + i + '[] = ' + toUIntArr(Buffer.concat([bigIntToBuffer(pub.x, 32), bigIntToBuffer(pub.y, 32)]), 4, 8) + ';');
});
console.log('static const struct EcdhTest ecdh_tests[] = {' + resArr.map((test) => '{' + test.join(',') + '}').join(',\n') + '};\n');
console.log('static const struct KeygenTest keygen_tests_ok[] = {' + privsArr.map((v, i) => '{priv_' + i + ', pub_for_priv_' + i + '}').join(',\n') + '};\n');
console.log('static const uint32_t keygen_tests_fail[][8] = {' + invalidScalars.join(',\n') + '};\n');
const invalidSignData = [
{k: 1n, z: n - G.x, priv: 1n},
{k: 0n, z: 0n, priv: 1n},
{k: n, z: 0n, priv: 1n}
];
const validSignData = [
{k: 1n, z: 0n, priv: 1n},
{k: n - 1n, z: 2n**256n - 1n, priv: n - 1n},
{k: bufferToBigInt(sha256('test0k')), z: bufferToBigInt(sha256('test0z')), priv: bufferToBigInt(sha256('test0p'))},
{k: bufferToBigInt(sha256('test1k')), z: bufferToBigInt(sha256('test1z')), priv: bufferToBigInt(sha256('test1p'))},
{k: bufferToBigInt(sha256('test2k')), z: bufferToBigInt(sha256('test2z')), priv: bufferToBigInt(sha256('test2p'))},
{k: bufferToBigInt(sha256('test3k')), z: bufferToBigInt(sha256('test3z')), priv: bufferToBigInt(sha256('test3p'))},
{k: bufferToBigInt(sha256('test4k')), z: bufferToBigInt(sha256('test4z')), priv: bufferToBigInt(sha256('test4p'))},
].map(d => {
const rs = sign(d.z, d.priv, d.k);
return {k: d.k, z: d.z, priv: d.priv, r: rs.r, s: rs.s};
});
console.log('static const struct InvalidSign invalid_signs[] = {' + invalidSignData.map(d =>
'{' + toUIntArr(bigIntToBuffer(d.k, 32), 4, 8) + ',\n' + toUIntArr(bigIntToBuffer(d.z, 32), 1, 1) + ',\n' + toUIntArr(bigIntToBuffer(d.priv, 32), 4, 8) + '}'
).join(',\n') + '};');
console.log('static const struct ValidSign valid_signs[] = {' + validSignData.map(d =>
'{' + toUIntArr(bigIntToBuffer(d.k, 32), 4, 8) + ',\n' + toUIntArr(bigIntToBuffer(d.z, 32), 1, 1) + ',\n' + toUIntArr(bigIntToBuffer(d.priv, 32), 4, 8) + ',\n' +
toUIntArr(Buffer.concat([bigIntToBuffer(d.r, 32), bigIntToBuffer(d.s, 32)]), 4, 8) + '}'
).join(',\n') + '};');
}
async function ecdsaVerifyTests() {
let data = await httpsRequest('https://raw.githubusercontent.com/google/wycheproof/master/testvectors/ecdsa_secp256r1_sha256_test.json');
data = JSON.parse(data);
const testGroups = data.testGroups;
const newTests = [];
testGroups.forEach((testGroup) => {
const publicKey = Buffer.from(testGroup.key.uncompressed.slice(2), 'hex');
testGroup.tests.forEach((test) => {
const msg = crypto.createHash('sha256').update(test.msg, 'hex').digest();
const sig = Buffer.from(test.sig, 'hex');
if (sig[0] !== 0x30 || sig[1] !== sig.length - 2) {
assert.equal(test.result, 'invalid');
//console.log(test.tcId + ' ' + test.comment);
return;
}
let rs = [];
let pos = 2;
for (let i = 0; i < 2; i++) {
const len = sig[pos + 1];
if (sig[pos] !== 0x02 || len > 33 || len > sig.length - pos - 2) {
assert.equal(test.result, 'invalid', test.tcId);
//console.log(test.tcId + ' ' + test.comment);
return;
}
let num = sig.slice(pos + 2, pos + 2 + len);
if (num.length == 33) {
if (num[0] !== 0) {
assert.equal(test.result, 'invalid');
//console.log(test.tcId + ' ' + test.comment);
return;
}
num = num.slice(1);
}
num = Buffer.concat([Buffer.alloc(32 - num.length), num]);
rs.push(num);
pos += 2 + len;
}
if (pos !== sig.length) {
assert.equal(test.result, 'invalid');
return;
}
newTests.push({tcId: test.tcId, key: publicKey, msg: msg, sig: Buffer.concat(rs), result: test.result === 'valid' || test.result === 'acceptable'});
});
});
const keys = {}; let keysSize = 0; const keysArr = [];
const msgs = {}; let msgsSize = 0; const msgsArr = [];
const sigs = {}; let sigsSize = 0; const sigsArr = [];
newTests.forEach((test) => {
if (!(test.key in keys)) {keys[test.key] = keysSize++; keysArr.push(test.key);}
if (!(test.msg in msgs)) {msgs[test.msg] = msgsSize++; msgsArr.push(test.msg);}
if (!(test.sig in sigs)) {sigs[test.sig] = sigsSize++; sigsArr.push(test.sig);}
});
const resArr = newTests.map((test) => {
return {key: keys[test.key], msg: msgs[test.msg], sig: sigs[test.sig], result: test.result, tcId: test.tcId};
}).map((test) => {
return ['key_' + test.key, 'msg_' + test.msg, 'sig_' + test.sig, test.result ? 1 : 0 /*, test.tcId*/];
});
keysArr.forEach((v, i) => console.log('static const uint32_t key_' + i + '[] = ' + toUIntArr(v, 4, 8) + ';'));
msgsArr.forEach((v, i) => console.log('static const uint8_t msg_' + i + '[] = ' + toUIntArr(v, 1, 1) + ';'));
sigsArr.forEach((v, i) => console.log('static const uint32_t sig_' + i + '[] = ' + toUIntArr(v, 4, 8) + ';'));
console.log('static const struct VerifyTest verify_tests[] = {' + resArr.map((test) => '{' + test.join(',') + '}').join(',\n') + '};\n');
}
(async () => {
console.log(`#include <string.h>
#include <stdint.h>
#include <stdbool.h>
#include "p256-cortex-m4.h"
#define COUNTOF(a) (sizeof(a) / sizeof((a)[0]))
struct VerifyTest {const uint32_t* key; const uint8_t* msg; const uint32_t* sig; bool result;};
struct EcdhTest {const uint8_t* pub; const uint32_t* priv; const uint8_t* shared; uint8_t publen; bool valid;};
struct KeygenTest {const uint32_t* priv; const uint32_t* pub;};
struct InvalidSign {const uint32_t k[8]; const uint8_t z[32]; const uint32_t priv[8];};
struct ValidSign {const uint32_t k[8]; const uint8_t z[32]; const uint32_t priv[8]; const uint32_t sig[16];};
`)
await ecdhTests();
await ecdsaVerifyTests();
console.log(`
bool run_tests(void) {
for (int i = 0; i < COUNTOF(verify_tests); i++) {
const struct VerifyTest* t = &verify_tests[i];
if (p256_verify(t->key, t->key + 8, t->msg, 32, t->sig, t->sig + 8) != t->result) {
return false;
}
}
for (int i = 0; i < COUNTOF(ecdh_tests); i++) {
const struct EcdhTest* t = &ecdh_tests[i];
uint32_t x[8], y[8];
uint8_t shared[32];
if ((p256_octet_string_to_point(x, y, t->pub, t->publen) && p256_ecdh_calc_shared_secret(shared, t->priv, x, y) && memcmp(shared, t->shared, 32) == 0) != t->valid) {
return false;
}
}
for (int i = 0; i < COUNTOF(keygen_tests_ok); i++) {
const struct KeygenTest* t = &keygen_tests_ok[i];
uint32_t pub[16];
if (!p256_keygen(pub, pub + 8, t->priv) || memcmp(pub, t->pub, 64) != 0) {
return false;
}
}
for (int i = 0; i < COUNTOF(keygen_tests_fail); i++) {
uint32_t x[8], y[8];
if (p256_keygen(x, y, keygen_tests_fail[i])) {
return false;
}
}
for (int i = 0; i < COUNTOF(invalid_signs); i++) {
const struct InvalidSign* t = &invalid_signs[i];
uint32_t sig[16];
if (p256_sign(sig, sig + 8, t->z, 32, t->priv, t->k)) {
return false;
}
}
for (int i = 0; i < COUNTOF(valid_signs); i++) {
const struct ValidSign* t = &valid_signs[i];
uint32_t sig[16];
if (!p256_sign(sig, sig + 8, t->z, 32, t->priv, t->k) || memcmp(sig, t->sig, 64) != 0) {
return false;
}
}
return true;
}
`);
})();