-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathCOVID-19-run-model.jl
178 lines (130 loc) · 5.88 KB
/
COVID-19-run-model.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
#-------------------------------------------------------------------------------------------------
#--
#-- Create a range of default parameters
#--
using DataFrames, DataFramesMeta
function forecastError(country::String, actual::Array{Float64}, forecast::Array{Float64})
# number of forcast points
l = length(actual)
# If logarithms are used, avoid errors.
actual = max.(actual, 0.0) .+ 1.0 # Should never happen
forecast = max.(forecast, 0.0) .+ 1.0
# Log error
# actual = log.(actual)
# forecast = log.(forecast)
# Power law
actual = sqrt.(actual)
forecast = sqrt.(forecast)
err_deaths = forecast .- actual
# Penality regarding beds and icus for being negative (less forecast than actual)
# To which extent forecast is under actual
Δ = (max.(actual .- forecast, 0.0)).^2
err_deaths = err_deaths .+ Δ
# Prepare the value to never be negative (to avoid log errors)
return sqrt( sum(err_deaths.^2) / l )
end
function forecastError(country::String, actual::Array{Int64}, forecast::Array{Float64})
return forecastError(country, convert(Array{Float64}, actual), forecast)
end
function singleCountryLoss(country::String, diseaseparams, countryparams; finalDate = nothing)
# finalDate = nothig to force using only the time span of actual recorded deaths
sol = calculateSolution(country, diseaseparams, countryparams; finalDate = finalDate)
# Extract total deaths profile
actual = convert(Array, countryData[country][:cases][:, :deaths])
deaths = forecastCompartmentOnActualDates(sol, "D", country)
# beds = forecastVariableOnActualDates(sol, "BED", country)
# icus = forecastVariableOnActualDates(sol, "ICU", country)
return forecastError(country, actual, deaths)
#return forecastError(country, actual, deaths, beds, icus)
end
function sumCountryLossesCountries(params)
totalError = 0.0
# Then each country for which the loss is immediately calculated
for n in 1:COUNTRY_N
country, _ = COUNTRY_LIST[n]
country_start_index = (n - 1) * COUNTRY_N + 1
country_final_index = (n - 1) * COUNTRY_N + COUNTRY_N
countryparams = params[country_start_index:country_final_index]
# loss = sum( (log.(actual) .- log.(forecast)).^ 2 ) / length(actual)
totalError += singleCountryLoss(country, DiseaseParameters, countryparams)
end
return totalError
end
#--
#-- Calculate the sum of all the losses of all the countries to optimise disease params.
#-- Loss per country is sized as if all countries had the same 1m population
#--
function sumCountryLossesDisease(diseaseparams)
# The parameters passed to the individual loss is created with a mask defined
totalError = 0.0
for (country, _) in COUNTRY_LIST
countryparams = countryData[country][:params]
totalError += singleCountryLoss(country, diseaseparams, countryparams)
end
return totalError
end
function fullEpidemyLoss(params)
# Deconstruct the entire parameter stack
# First are the disease parameters
diseaseparams = params[1:DISEASE_N]
totalError = 0.0
# Then each country for which the loss is immediately calculated
for n in 1:COUNTRY_LIST_N
country, _ = COUNTRY_LIST[n]
country_start_index = DISEASE_N + (n - 1) * COUNTRY_N + 1
country_final_index = DISEASE_N + (n - 1) * COUNTRY_N + COUNTRY_N
countryparams = params[country_start_index:country_final_index]
# finalDate = nothig to force using only the time span of actual recorded deaths
sol = calculateSolution(country, diseaseparams, countryparams; finalDate = nothing)
# Extract total deaths profile
# Extract total deaths profile
actual = convert(Array, countryData[country][:cases][:, :deaths])
deaths = forecastCompartmentOnActualDates(sol, "D", country)
beds = forecastVariableOnActualDates(sol, "BED", country)
icus = forecastVariableOnActualDates(sol, "ICU", country)
# loss = sum( (log.(actual) .- log.(forecast)).^ 2 ) / length(actual)
totalError += forecastError(country, actual, deaths, beds, icus)
end
return totalError
end
function updateEpidemiologyOnce(;maxtime = 60)
# Optimise the epidemiology
println("OPTIMISING EPIDEMIOLOGY---------------------------")
print("Before "); @show DiseaseParameters
result = bboptimize(sumCountryLossesDisease,
SearchRange = DISEASE_RANGE;
Method = :adaptive_de_rand_1_bin,
MaxTime = maxtime,
TargetFitness = 2.0,
NThreads = Threads.nthreads(),
TraceMode = :compact)
global DiseaseParameters = best_candidate(result)
print("After "); @show DiseaseParameters
end
function updateCountryOnce(country; maxtime = 60)
# Make a note of the disease parameters
println(country)
print("Before ")
@show countryData[country][:params]
countryRange = COUNTRY_RANGE
countryRange[COUNTRY_PARAM_START] = approximateModelStartRange(country)
# Determine optimal parameters for each countryw
result = bboptimize(p -> singleCountryLoss(country, DiseaseParameters, p),
SearchRange = countryRange;
Method = :adaptive_de_rand_1_bin,
MaxTime = maxtime,
TargetFitness = 2.0,
TraceMode = :compact)
print("After "); @show best_candidate(result)
println();
global countryData[country][:params] = best_candidate(result)
end
function updateEveryCountry(; maxtime = 60)
#-------------------------------------------------------------------------------------------------
#--
#-- Optimisition all countries one by one
#--
for (country, _) in COUNTRY_LIST
updateCountryOnce(country; maxtime = maxtime)
end
end