Skip to content

Latest commit

 

History

History
81 lines (61 loc) · 2.15 KB

File metadata and controls

81 lines (61 loc) · 2.15 KB

Readme File


Movie recommender system and algorithm comparison

SID: 56641800    Name: Du Junye


Python Verison and Package version:
Note: Please make sure that the packages are installed correctly to make the program run normally.
Python version and cuda configuration:

  • Python 3.9.7
  • cuda 11.0

Missing value handling and processing:

  • missingno 0.5.1
  • ast.literal_eval

Scientific calculation package:

  • Numpy 1.21.5
  • Pandas 1.3.4
  • Scipy 1.8.0

Machine Laerning tools:

  • scikit-learn 1.0.2
  • torch 1.10.1+cu113
  • torchaudio 0.10.1+cu113
  • torchvision 0.11.2+cu113
  • tenserflow with keras

Visualization tools:

  • Matplotlib 3.4.3
  • Seaborn 0.11.2
  • Plotly 5.5.0
  • Cufflinks 0.17.3

Outline:

I. Data pre-processing

Missing value handling
Movie information extraction
Feature engineering
Addition data modification

II. Data exploration and visualization

Introduce weighted rating
Trend of quantities of different types of films

III. Collabrative Filtering Algorithms

Baseline, SVD, KNN with means methods
Performance comparison

IV. Movie Recommender Implementation

User-rating based recommender
Description based recommender
Keyword based recommender
Hybrid recommender
Deep Learning method


Device Information:
CPU: Intel(R) Xeon(R) Gold 5216R CPU @ 2.10GHZ
GPU: Tesla V100S*2

Estimated running time:

  • Data processing part: 5-6 min
  • CF part: 2 min
  • Deep learning part: 5 min

References:

  • Hands on Machine Learning with Scikit-Learn & TensorFlow by Aurélien Géron (O'Reilly). CopyRight 2017 Aurélien Géron
  • https://nlp.stanford.edu/IR-book/html/htmledition/stemming-and-lemmatization-1.html
  • Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu and Tat-Seng Chua (2017).Neural Collaborative Filtering. In Proceedings of WWW '17, Perth, Australia, April 03-07, 2017.
  • Reference Lecture Note of SDSC3002