forked from huggingface/candle
-
Notifications
You must be signed in to change notification settings - Fork 8
/
main.rs
631 lines (569 loc) · 19.6 KB
/
main.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
#[cfg(feature = "accelerate")]
extern crate accelerate_src;
#[cfg(feature = "mkl")]
extern crate intel_mkl_src;
use candle_transformers::models::stable_diffusion;
use anyhow::{Error as E, Result};
use candle::{DType, Device, IndexOp, Module, Tensor, D};
use clap::Parser;
use stable_diffusion::vae::AutoEncoderKL;
use tokenizers::Tokenizer;
#[derive(Parser)]
#[command(author, version, about, long_about = None)]
struct Args {
/// The prompt to be used for image generation.
#[arg(
long,
default_value = "A very realistic photo of a rusty robot walking on a sandy beach"
)]
prompt: String,
#[arg(long, default_value = "")]
uncond_prompt: String,
/// Run on CPU rather than on GPU.
#[arg(long)]
cpu: bool,
/// Enable tracing (generates a trace-timestamp.json file).
#[arg(long)]
tracing: bool,
/// The height in pixels of the generated image.
#[arg(long)]
height: Option<usize>,
/// The width in pixels of the generated image.
#[arg(long)]
width: Option<usize>,
/// The UNet weight file, in .safetensors format.
#[arg(long, value_name = "FILE")]
unet_weights: Option<String>,
/// The CLIP weight file, in .safetensors format.
#[arg(long, value_name = "FILE")]
clip_weights: Option<String>,
/// The VAE weight file, in .safetensors format.
#[arg(long, value_name = "FILE")]
vae_weights: Option<String>,
#[arg(long, value_name = "FILE")]
/// The file specifying the tokenizer to used for tokenization.
tokenizer: Option<String>,
/// The size of the sliced attention or 0 for automatic slicing (disabled by default)
#[arg(long)]
sliced_attention_size: Option<usize>,
/// The number of steps to run the diffusion for.
#[arg(long)]
n_steps: Option<usize>,
/// The number of samples to generate iteratively.
#[arg(long, default_value_t = 1)]
num_samples: usize,
/// The numbers of samples to generate simultaneously.
#[arg[long, default_value_t = 1]]
bsize: usize,
/// The name of the final image to generate.
#[arg(long, value_name = "FILE", default_value = "sd_final.png")]
final_image: String,
#[arg(long, value_enum, default_value = "v2-1")]
sd_version: StableDiffusionVersion,
/// Generate intermediary images at each step.
#[arg(long, action)]
intermediary_images: bool,
#[arg(long)]
use_flash_attn: bool,
#[arg(long)]
use_f16: bool,
#[arg(long)]
guidance_scale: Option<f64>,
#[arg(long, value_name = "FILE")]
img2img: Option<String>,
/// The strength, indicates how much to transform the initial image. The
/// value must be between 0 and 1, a value of 1 discards the initial image
/// information.
#[arg(long, default_value_t = 0.8)]
img2img_strength: f64,
/// The seed to use when generating random samples.
#[arg(long)]
seed: Option<u64>,
}
#[derive(Debug, Clone, Copy, clap::ValueEnum, PartialEq, Eq)]
enum StableDiffusionVersion {
V1_5,
V2_1,
Xl,
Turbo,
}
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
enum ModelFile {
Tokenizer,
Tokenizer2,
Clip,
Clip2,
Unet,
Vae,
}
impl StableDiffusionVersion {
fn repo(&self) -> &'static str {
match self {
Self::Xl => "stabilityai/stable-diffusion-xl-base-1.0",
Self::V2_1 => "stabilityai/stable-diffusion-2-1",
Self::V1_5 => "runwayml/stable-diffusion-v1-5",
Self::Turbo => "stabilityai/sdxl-turbo",
}
}
fn unet_file(&self, use_f16: bool) -> &'static str {
match self {
Self::V1_5 | Self::V2_1 | Self::Xl | Self::Turbo => {
if use_f16 {
"unet/diffusion_pytorch_model.fp16.safetensors"
} else {
"unet/diffusion_pytorch_model.safetensors"
}
}
}
}
fn vae_file(&self, use_f16: bool) -> &'static str {
match self {
Self::V1_5 | Self::V2_1 | Self::Xl | Self::Turbo => {
if use_f16 {
"vae/diffusion_pytorch_model.fp16.safetensors"
} else {
"vae/diffusion_pytorch_model.safetensors"
}
}
}
}
fn clip_file(&self, use_f16: bool) -> &'static str {
match self {
Self::V1_5 | Self::V2_1 | Self::Xl | Self::Turbo => {
if use_f16 {
"text_encoder/model.fp16.safetensors"
} else {
"text_encoder/model.safetensors"
}
}
}
}
fn clip2_file(&self, use_f16: bool) -> &'static str {
match self {
Self::V1_5 | Self::V2_1 | Self::Xl | Self::Turbo => {
if use_f16 {
"text_encoder_2/model.fp16.safetensors"
} else {
"text_encoder_2/model.safetensors"
}
}
}
}
}
impl ModelFile {
fn get(
&self,
filename: Option<String>,
version: StableDiffusionVersion,
use_f16: bool,
) -> Result<std::path::PathBuf> {
use hf_hub::api::sync::Api;
match filename {
Some(filename) => Ok(std::path::PathBuf::from(filename)),
None => {
let (repo, path) = match self {
Self::Tokenizer => {
let tokenizer_repo = match version {
StableDiffusionVersion::V1_5 | StableDiffusionVersion::V2_1 => {
"openai/clip-vit-base-patch32"
}
StableDiffusionVersion::Xl | StableDiffusionVersion::Turbo => {
// This seems similar to the patch32 version except some very small
// difference in the split regex.
"openai/clip-vit-large-patch14"
}
};
(tokenizer_repo, "tokenizer.json")
}
Self::Tokenizer2 => {
("laion/CLIP-ViT-bigG-14-laion2B-39B-b160k", "tokenizer.json")
}
Self::Clip => (version.repo(), version.clip_file(use_f16)),
Self::Clip2 => (version.repo(), version.clip2_file(use_f16)),
Self::Unet => (version.repo(), version.unet_file(use_f16)),
Self::Vae => {
// Override for SDXL when using f16 weights.
// See https://github.com/huggingface/candle/issues/1060
if matches!(
version,
StableDiffusionVersion::Xl | StableDiffusionVersion::Turbo,
) && use_f16
{
(
"madebyollin/sdxl-vae-fp16-fix",
"diffusion_pytorch_model.safetensors",
)
} else {
(version.repo(), version.vae_file(use_f16))
}
}
};
let filename = Api::new()?.model(repo.to_string()).get(path)?;
Ok(filename)
}
}
}
}
fn output_filename(
basename: &str,
sample_idx: usize,
num_samples: usize,
timestep_idx: Option<usize>,
) -> String {
let filename = if num_samples > 1 {
match basename.rsplit_once('.') {
None => format!("{basename}.{sample_idx}.png"),
Some((filename_no_extension, extension)) => {
format!("{filename_no_extension}.{sample_idx}.{extension}")
}
}
} else {
basename.to_string()
};
match timestep_idx {
None => filename,
Some(timestep_idx) => match filename.rsplit_once('.') {
None => format!("{filename}-{timestep_idx}.png"),
Some((filename_no_extension, extension)) => {
format!("{filename_no_extension}-{timestep_idx}.{extension}")
}
},
}
}
#[allow(clippy::too_many_arguments)]
fn save_image(
vae: &AutoEncoderKL,
latents: &Tensor,
vae_scale: f64,
bsize: usize,
idx: usize,
final_image: &str,
num_samples: usize,
timestep_ids: Option<usize>,
) -> Result<()> {
let images = vae.decode(&(latents / vae_scale)?)?;
let images = ((images / 2.)? + 0.5)?.to_device(&Device::Cpu)?;
let images = (images.clamp(0f32, 1.)? * 255.)?.to_dtype(DType::U8)?;
for batch in 0..bsize {
let image = images.i(batch)?;
let image_filename = output_filename(
final_image,
(bsize * idx) + batch + 1,
batch + num_samples,
timestep_ids,
);
candle_examples::save_image(&image, image_filename)?;
}
Ok(())
}
#[allow(clippy::too_many_arguments)]
fn text_embeddings(
prompt: &str,
uncond_prompt: &str,
tokenizer: Option<String>,
clip_weights: Option<String>,
sd_version: StableDiffusionVersion,
sd_config: &stable_diffusion::StableDiffusionConfig,
use_f16: bool,
device: &Device,
dtype: DType,
use_guide_scale: bool,
first: bool,
) -> Result<Tensor> {
let tokenizer_file = if first {
ModelFile::Tokenizer
} else {
ModelFile::Tokenizer2
};
let tokenizer = tokenizer_file.get(tokenizer, sd_version, use_f16)?;
let tokenizer = Tokenizer::from_file(tokenizer).map_err(E::msg)?;
let pad_id = match &sd_config.clip.pad_with {
Some(padding) => *tokenizer.get_vocab(true).get(padding.as_str()).unwrap(),
None => *tokenizer.get_vocab(true).get("<|endoftext|>").unwrap(),
};
println!("Running with prompt \"{prompt}\".");
let mut tokens = tokenizer
.encode(prompt, true)
.map_err(E::msg)?
.get_ids()
.to_vec();
if tokens.len() > sd_config.clip.max_position_embeddings {
anyhow::bail!(
"the prompt is too long, {} > max-tokens ({})",
tokens.len(),
sd_config.clip.max_position_embeddings
)
}
while tokens.len() < sd_config.clip.max_position_embeddings {
tokens.push(pad_id)
}
let tokens = Tensor::new(tokens.as_slice(), device)?.unsqueeze(0)?;
println!("Building the Clip transformer.");
let clip_weights_file = if first {
ModelFile::Clip
} else {
ModelFile::Clip2
};
let clip_weights = clip_weights_file.get(clip_weights, sd_version, false)?;
let clip_config = if first {
&sd_config.clip
} else {
sd_config.clip2.as_ref().unwrap()
};
let text_model =
stable_diffusion::build_clip_transformer(clip_config, clip_weights, device, DType::F32)?;
let text_embeddings = text_model.forward(&tokens)?;
let text_embeddings = if use_guide_scale {
let mut uncond_tokens = tokenizer
.encode(uncond_prompt, true)
.map_err(E::msg)?
.get_ids()
.to_vec();
if uncond_tokens.len() > sd_config.clip.max_position_embeddings {
anyhow::bail!(
"the negative prompt is too long, {} > max-tokens ({})",
uncond_tokens.len(),
sd_config.clip.max_position_embeddings
)
}
while uncond_tokens.len() < sd_config.clip.max_position_embeddings {
uncond_tokens.push(pad_id)
}
let uncond_tokens = Tensor::new(uncond_tokens.as_slice(), device)?.unsqueeze(0)?;
let uncond_embeddings = text_model.forward(&uncond_tokens)?;
Tensor::cat(&[uncond_embeddings, text_embeddings], 0)?.to_dtype(dtype)?
} else {
text_embeddings.to_dtype(dtype)?
};
Ok(text_embeddings)
}
fn image_preprocess<T: AsRef<std::path::Path>>(path: T) -> anyhow::Result<Tensor> {
let img = image::ImageReader::open(path)?.decode()?;
let (height, width) = (img.height() as usize, img.width() as usize);
let height = height - height % 32;
let width = width - width % 32;
let img = img.resize_to_fill(
width as u32,
height as u32,
image::imageops::FilterType::CatmullRom,
);
let img = img.to_rgb8();
let img = img.into_raw();
let img = Tensor::from_vec(img, (height, width, 3), &Device::Cpu)?
.permute((2, 0, 1))?
.to_dtype(DType::F32)?
.affine(2. / 255., -1.)?
.unsqueeze(0)?;
Ok(img)
}
fn run(args: Args) -> Result<()> {
use tracing_chrome::ChromeLayerBuilder;
use tracing_subscriber::prelude::*;
let Args {
prompt,
uncond_prompt,
cpu,
height,
width,
n_steps,
tokenizer,
final_image,
sliced_attention_size,
num_samples,
bsize,
sd_version,
clip_weights,
vae_weights,
unet_weights,
tracing,
use_f16,
guidance_scale,
use_flash_attn,
img2img,
img2img_strength,
seed,
..
} = args;
if !(0. ..=1.).contains(&img2img_strength) {
anyhow::bail!("img2img-strength should be between 0 and 1, got {img2img_strength}")
}
let _guard = if tracing {
let (chrome_layer, guard) = ChromeLayerBuilder::new().build();
tracing_subscriber::registry().with(chrome_layer).init();
Some(guard)
} else {
None
};
let guidance_scale = match guidance_scale {
Some(guidance_scale) => guidance_scale,
None => match sd_version {
StableDiffusionVersion::V1_5
| StableDiffusionVersion::V2_1
| StableDiffusionVersion::Xl => 7.5,
StableDiffusionVersion::Turbo => 0.,
},
};
let n_steps = match n_steps {
Some(n_steps) => n_steps,
None => match sd_version {
StableDiffusionVersion::V1_5
| StableDiffusionVersion::V2_1
| StableDiffusionVersion::Xl => 30,
StableDiffusionVersion::Turbo => 1,
},
};
let dtype = if use_f16 { DType::F16 } else { DType::F32 };
let sd_config = match sd_version {
StableDiffusionVersion::V1_5 => {
stable_diffusion::StableDiffusionConfig::v1_5(sliced_attention_size, height, width)
}
StableDiffusionVersion::V2_1 => {
stable_diffusion::StableDiffusionConfig::v2_1(sliced_attention_size, height, width)
}
StableDiffusionVersion::Xl => {
stable_diffusion::StableDiffusionConfig::sdxl(sliced_attention_size, height, width)
}
StableDiffusionVersion::Turbo => stable_diffusion::StableDiffusionConfig::sdxl_turbo(
sliced_attention_size,
height,
width,
),
};
let scheduler = sd_config.build_scheduler(n_steps)?;
let device = candle_examples::device(cpu)?;
if let Some(seed) = seed {
device.set_seed(seed)?;
}
let use_guide_scale = guidance_scale > 1.0;
let which = match sd_version {
StableDiffusionVersion::Xl | StableDiffusionVersion::Turbo => vec![true, false],
_ => vec![true],
};
let text_embeddings = which
.iter()
.map(|first| {
text_embeddings(
&prompt,
&uncond_prompt,
tokenizer.clone(),
clip_weights.clone(),
sd_version,
&sd_config,
use_f16,
&device,
dtype,
use_guide_scale,
*first,
)
})
.collect::<Result<Vec<_>>>()?;
let text_embeddings = Tensor::cat(&text_embeddings, D::Minus1)?;
let text_embeddings = text_embeddings.repeat((bsize, 1, 1))?;
println!("{text_embeddings:?}");
println!("Building the autoencoder.");
let vae_weights = ModelFile::Vae.get(vae_weights, sd_version, use_f16)?;
let vae = sd_config.build_vae(vae_weights, &device, dtype)?;
let init_latent_dist = match &img2img {
None => None,
Some(image) => {
let image = image_preprocess(image)?.to_device(&device)?;
Some(vae.encode(&image)?)
}
};
println!("Building the unet.");
let unet_weights = ModelFile::Unet.get(unet_weights, sd_version, use_f16)?;
let unet = sd_config.build_unet(unet_weights, &device, 4, use_flash_attn, dtype)?;
let t_start = if img2img.is_some() {
n_steps - (n_steps as f64 * img2img_strength) as usize
} else {
0
};
let vae_scale = match sd_version {
StableDiffusionVersion::V1_5
| StableDiffusionVersion::V2_1
| StableDiffusionVersion::Xl => 0.18215,
StableDiffusionVersion::Turbo => 0.13025,
};
for idx in 0..num_samples {
let timesteps = scheduler.timesteps();
let latents = match &init_latent_dist {
Some(init_latent_dist) => {
let latents = (init_latent_dist.sample()? * vae_scale)?.to_device(&device)?;
if t_start < timesteps.len() {
let noise = latents.randn_like(0f64, 1f64)?;
scheduler.add_noise(&latents, noise, timesteps[t_start])?
} else {
latents
}
}
None => {
let latents = Tensor::randn(
0f32,
1f32,
(bsize, 4, sd_config.height / 8, sd_config.width / 8),
&device,
)?;
// scale the initial noise by the standard deviation required by the scheduler
(latents * scheduler.init_noise_sigma())?
}
};
let mut latents = latents.to_dtype(dtype)?;
println!("starting sampling");
for (timestep_index, ×tep) in timesteps.iter().enumerate() {
if timestep_index < t_start {
continue;
}
let start_time = std::time::Instant::now();
let latent_model_input = if use_guide_scale {
Tensor::cat(&[&latents, &latents], 0)?
} else {
latents.clone()
};
let latent_model_input = scheduler.scale_model_input(latent_model_input, timestep)?;
let noise_pred =
unet.forward(&latent_model_input, timestep as f64, &text_embeddings)?;
let noise_pred = if use_guide_scale {
let noise_pred = noise_pred.chunk(2, 0)?;
let (noise_pred_uncond, noise_pred_text) = (&noise_pred[0], &noise_pred[1]);
(noise_pred_uncond + ((noise_pred_text - noise_pred_uncond)? * guidance_scale)?)?
} else {
noise_pred
};
latents = scheduler.step(&noise_pred, timestep, &latents)?;
let dt = start_time.elapsed().as_secs_f32();
println!("step {}/{n_steps} done, {:.2}s", timestep_index + 1, dt);
if args.intermediary_images {
save_image(
&vae,
&latents,
vae_scale,
bsize,
idx,
&final_image,
num_samples,
Some(timestep_index + 1),
)?;
}
}
println!(
"Generating the final image for sample {}/{}.",
idx + 1,
num_samples
);
save_image(
&vae,
&latents,
vae_scale,
bsize,
idx,
&final_image,
num_samples,
None,
)?;
}
Ok(())
}
fn main() -> Result<()> {
let args = Args::parse();
run(args)
}