-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.sh
195 lines (173 loc) · 5.85 KB
/
train.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
# 联合训练(10折)
CUDA_VISIBLE_DEVICES=0,1 python ./project/run_itransformer.py \
--data_path='./input/bdc_train9198/global' \
--model_path='./project/checkpoint/all_seed_10/seed_1' \
--batch_size=10240 \
--learning_rate=5e-4 \
--max_epochs=2 \
--num_workers=7 \
--seed=1
CUDA_VISIBLE_DEVICES=0,1 python ./project/run_itransformer.py \
--data_path='./input/bdc_train9198/global' \
--model_path='./project/checkpoint/all_seed_10/seed_2' \
--batch_size=10240 \
--learning_rate=5e-4 \
--max_epochs=2 \
--num_workers=7 \
--seed=2
CUDA_VISIBLE_DEVICES=0,1 python ./project/run_itransformer.py \
--data_path='./input/bdc_train9198/global' \
--model_path='./project/checkpoint/all_seed_10/seed_3' \
--batch_size=10240 \
--learning_rate=5e-4 \
--max_epochs=2 \
--num_workers=7 \
--seed=3
CUDA_VISIBLE_DEVICES=0,1 python ./project/run_itransformer.py \
--data_path='./input/bdc_train9198/global' \
--model_path='./project/checkpoint/all_seed_10/seed_4' \
--batch_size=10240 \
--learning_rate=5e-4 \
--max_epochs=2 \
--num_workers=7 \
--seed=4
CUDA_VISIBLE_DEVICES=0,1 python ./project/run_itransformer.py \
--data_path='./input/bdc_train9198/global' \
--model_path='./project/checkpoint/all_seed_10/seed_5' \
--batch_size=10240 \
--learning_rate=5e-4 \
--max_epochs=2 \
--num_workers=7 \
--seed=5
CUDA_VISIBLE_DEVICES=0,1 python ./project/run_itransformer.py \
--data_path='./input/bdc_train9198/global' \
--model_path='./project/checkpoint/all_seed_10/seed_6' \
--batch_size=10240 \
--learning_rate=5e-4 \
--max_epochs=2 \
--num_workers=7 \
--seed=6
CUDA_VISIBLE_DEVICES=0,1 python ./project/run_itransformer.py \
--data_path='./input/bdc_train9198/global' \
--model_path='./project/checkpoint/all_seed_10/seed_7' \
--batch_size=10240 \
--learning_rate=5e-4 \
--max_epochs=2 \
--num_workers=7 \
--seed=7
CUDA_VISIBLE_DEVICES=0,1 python ./project/run_itransformer.py \
--data_path='./input/bdc_train9198/global' \
--model_path='./project/checkpoint/all_seed_10/seed_8' \
--batch_size=10240 \
--learning_rate=5e-4 \
--max_epochs=2 \
--num_workers=7 \
--seed=8
CUDA_VISIBLE_DEVICES=0,1 python ./project/run_itransformer.py \
--data_path='./input/bdc_train9198/global' \
--model_path='./project/checkpoint/all_seed_10/seed_9' \
--batch_size=10240 \
--learning_rate=5e-4 \
--max_epochs=2 \
--num_workers=7 \
--seed=9
CUDA_VISIBLE_DEVICES=0,1 python ./project/run_itransformer.py \
--data_path='./input/bdc_train9198/global' \
--model_path='./project/checkpoint/all_seed_10/seed_10' \
--batch_size=10240 \
--learning_rate=5e-4 \
--max_epochs=2 \
--num_workers=7 \
--seed=10
# 训练temp模型(5折)
CUDA_VISIBLE_DEVICES=0,1 python ./project/run_itransformer.py \
--data_path='./input/bdc_train9198/global' \
--model_path='./project/checkpoint/temp_seed_5/seed_1' \
--batch_size=10240 \
--learning_rate=3e-4 \
--max_epochs=2 \
--num_workers=7 \
--pred_var='temp' \
--seed=11
CUDA_VISIBLE_DEVICES=0,1 python ./project/run_itransformer.py \
--data_path='./input/bdc_train9198/global' \
--model_path='./project/checkpoint/temp_seed_5/seed_2' \
--batch_size=10240 \
--learning_rate=3e-4 \
--max_epochs=2 \
--num_workers=7 \
--pred_var='temp' \
--seed=12
CUDA_VISIBLE_DEVICES=0,1 python ./project/run_itransformer.py \
--data_path='./input/bdc_train9198/global' \
--model_path='./project/checkpoint/temp_seed_5/seed_3' \
--batch_size=10240 \
--learning_rate=3e-4 \
--max_epochs=2 \
--num_workers=7 \
--pred_var='temp' \
--seed=13
CUDA_VISIBLE_DEVICES=0,1 python ./project/run_itransformer.py \
--data_path='./input/bdc_train9198/global' \
--model_path='./project/checkpoint/temp_seed_5/seed_4' \
--batch_size=10240 \
--learning_rate=3e-4 \
--max_epochs=2 \
--num_workers=7 \
--pred_var='temp' \
--seed=14
CUDA_VISIBLE_DEVICES=0,1 python ./project/run_itransformer.py \
--data_path='./input/bdc_train9198/global' \
--model_path='./project/checkpoint/temp_seed_5/seed_5' \
--batch_size=10240 \
--learning_rate=3e-4 \
--max_epochs=2 \
--num_workers=7 \
--pred_var='temp' \
--seed=15
# 训练wind模型(5折)
CUDA_VISIBLE_DEVICES=0,1 python ./project/run_itransformer.py \
--data_path='./input/bdc_train9198/global' \
--model_path='./project/checkpoint/wind_seed_5/seed_1' \
--batch_size=10240 \
--learning_rate=3e-4 \
--max_epochs=2 \
--num_workers=7 \
--pred_var='wind' \
--seed=11
CUDA_VISIBLE_DEVICES=0,1 python ./project/run_itransformer.py \
--data_path='./input/bdc_train9198/global' \
--model_path='./project/checkpoint/wind_seed_5/seed_2' \
--batch_size=10240 \
--learning_rate=3e-4 \
--max_epochs=2 \
--num_workers=7 \
--pred_var='wind' \
--seed=12
CUDA_VISIBLE_DEVICES=0,1 python ./project/run_itransformer.py \
--data_path='./input/bdc_train9198/global' \
--model_path='./project/checkpoint/wind_seed_5/seed_3' \
--batch_size=10240 \
--learning_rate=3e-4 \
--max_epochs=2 \
--num_workers=7 \
--pred_var='wind' \
--seed=13
CUDA_VISIBLE_DEVICES=0,1 python ./project/run_itransformer.py \
--data_path='./input/bdc_train9198/global' \
--model_path='./project/checkpoint/wind_seed_5/seed_4' \
--batch_size=10240 \
--learning_rate=3e-4 \
--max_epochs=2 \
--num_workers=7 \
--pred_var='wind' \
--seed=14
CUDA_VISIBLE_DEVICES=0,1 python ./project/run_itransformer.py \
--data_path='./input/bdc_train9198/global' \
--model_path='./project/checkpoint/wind_seed_5/seed_5' \
--batch_size=10240 \
--learning_rate=3e-4 \
--max_epochs=2 \
--num_workers=7 \
--pred_var='wind' \
--seed=15