-
Notifications
You must be signed in to change notification settings - Fork 0
/
ann_theano.py
150 lines (119 loc) · 4.42 KB
/
ann_theano.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
from __future__ import print_function, division
from builtins import range
# Note: you may need to update your version of future
# sudo pip install -U future
import numpy as np
import theano
import theano.tensor as T
import matplotlib.pyplot as plt
from util import getData, getBinaryData, error_rate, relu, init_weight_and_bias
from sklearn.utils import shuffle
def rmsprop(cost, params, lr, mu, decay, eps):
grads = T.grad(cost, params)
updates = []
for p, g in zip(params, grads):
# cache
ones = np.ones_like(p.get_value(), dtype=np.float32)
c = theano.shared(ones)
new_c = decay*c + (np.float32(1.0) - decay)*g*g
# momentum
zeros = np.zeros_like(p.get_value(), dtype=np.float32)
m = theano.shared(zeros)
new_m = mu*m - lr*g / T.sqrt(new_c + eps)
# param update
new_p = p + new_m
# append the updates
updates.append((c, new_c))
updates.append((m, new_m))
updates.append((p, new_p))
return updates
class HiddenLayer(object):
def __init__(self, M1, M2, an_id):
self.id = an_id
self.M1 = M1
self.M2 = M2
W, b = init_weight_and_bias(M1, M2)
self.W = theano.shared(W, 'W_%s' % self.id)
self.b = theano.shared(b, 'b_%s' % self.id)
self.params = [self.W, self.b]
def forward(self, X):
return relu(X.dot(self.W) + self.b)
class ANN(object):
def __init__(self, hidden_layer_sizes):
self.hidden_layer_sizes = hidden_layer_sizes
def fit(self, X, Y, Xvalid, Yvalid, learning_rate=1e-2, mu=0.99, decay=0.999, reg=1e-3, eps=1e-8, epochs=10, batch_sz=100, show_fig=False):
# downcast
learning_rate = np.float32(learning_rate)
mu = np.float32(mu)
decay = np.float32(decay)
reg = np.float32(reg)
eps = np.float32(eps)
X = X.astype(np.float32)
Xvalid = Xvalid.astype(np.float32)
Y = Y.astype(np.int32)
Yvalid = Yvalid.astype(np.int32)
# initialize hidden layers
N, D = X.shape
K = len(set(Y))
self.hidden_layers = []
M1 = D
count = 0
for M2 in self.hidden_layer_sizes:
h = HiddenLayer(M1, M2, count)
self.hidden_layers.append(h)
M1 = M2
count += 1
W, b = init_weight_and_bias(M1, K)
self.W = theano.shared(W, 'W_logreg')
self.b = theano.shared(b, 'b_logreg')
# collect params for later use
self.params = [self.W, self.b]
for h in self.hidden_layers:
self.params += h.params
# set up theano functions and variables
thX = T.fmatrix('X')
thY = T.ivector('Y')
pY = self.th_forward(thX)
rcost = reg*T.sum([(p*p).sum() for p in self.params])
cost = -T.mean(T.log(pY[T.arange(thY.shape[0]), thY])) + rcost
prediction = self.th_predict(thX)
# actual prediction function
self.predict_op = theano.function(inputs=[thX], outputs=prediction)
cost_predict_op = theano.function(inputs=[thX, thY], outputs=[cost, prediction])
updates = rmsprop(cost, self.params, learning_rate, mu, decay, eps)
train_op = theano.function(
inputs=[thX, thY],
updates=updates
)
n_batches = N // batch_sz
costs = []
for i in range(epochs):
X, Y = shuffle(X, Y)
for j in range(n_batches):
Xbatch = X[j*batch_sz:(j*batch_sz+batch_sz)]
Ybatch = Y[j*batch_sz:(j*batch_sz+batch_sz)]
train_op(Xbatch, Ybatch)
if j % 20 == 0:
c, p = cost_predict_op(Xvalid, Yvalid)
costs.append(c)
e = error_rate(Yvalid, p)
print("i:", i, "j:", j, "nb:", n_batches, "cost:", c, "error rate:", e)
if show_fig:
plt.plot(costs)
plt.show()
def th_forward(self, X):
Z = X
for h in self.hidden_layers:
Z = h.forward(Z)
return T.nnet.softmax(Z.dot(self.W) + self.b)
def th_predict(self, X):
pY = self.th_forward(X)
return T.argmax(pY, axis=1)
def predict(self, X):
return self.predict_op(X)
def main():
Xtrain, Ytrain, Xvalid, Yvalid = getData()
model = ANN([2000, 1000, 500])
model.fit(Xtrain, Ytrain, Xvalid, Yvalid, show_fig=True)
if __name__ == '__main__':
main()