-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodel_soup.py
53 lines (43 loc) · 1.87 KB
/
model_soup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import os
import torch
def parse_args():
parser = argparse.ArgumentParser(description='Model Soup')
parser.add_argument('--models', nargs='+', default=[], help='Ensemble results')
parser.add_argument('--model-folder', default=None, help='Ensemble results')
parser.add_argument('--out', default="uniform_soup.pth", help='output path')
args = parser.parse_args()
assert len(args.models) != 0 or args.model_folder is not None
return args
def get_models(args):
if args.models and args.model_folder:
raise ValueError("You can only use one of ``--models`` or `--model-folder`")
if len(args.models) != 0:
for m in args.models:
assert m.endswith(".pth")
return args.models
else:
files = os.listdir(args.model_folder)
return [os.path.join(args.model_folder, f) for f in files if f.endswith('.pth')]
def main():
args = parse_args()
model_paths = get_models(args)
NUM_MODELS = len(model_paths)
print(f"Find {NUM_MODELS} model to do model soup...")
# create the uniform soup sequentially to not overload memory
for j, model_path in enumerate(model_paths):
print(f'Adding model {j} of {NUM_MODELS - 1} to uniform soup.')
assert os.path.exists(model_path), f"Can not find {model_path}"
state_dict = torch.load(model_path, map_location=torch.device('cpu'))
if "state_dict" in state_dict:
state_dict = state_dict['state_dict']
# for k, v in state_dict.items():
# print(k, type(v))
if j == 0:
uniform_soup = {k : v * (1./NUM_MODELS) for k, v in state_dict.items()}
else:
uniform_soup = {k : v * (1./NUM_MODELS) + uniform_soup[k] for k, v in state_dict.items()}
torch.save(uniform_soup, args.out)
if __name__ == '__main__':
main()