-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathdorecon_grain.py
517 lines (468 loc) · 17.3 KB
/
dorecon_grain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
from __future__ import print_function, division
from ImageD11.columnfile import columnfile
from ImageD11 import grain
import numpy as np
import sys, time, os.path
import pylab as pl
from skimage.transform import iradon, radon
import h5py
# Optimisation : cache existing columnfiles in memory
# store the NY step info here
class colfilecache( object ):
def __init__(self, ymin=-15, ymax= 15.01, ystep=0.5, parfile=None):
self.ymin = ymin
self.ymax = ymax
self.ystep = ystep
self.NY = len(np.arange( ymin, ymax, ystep ) )
self.parfile = parfile
self.cache = {}
def get( self, fname ):
if fname not in self.cache:
# integer dty positions for indexing arrays
colfile = columnfile( fname )
iy = np.round( (colfile.dty - self.ymin)/self.ystep ).astype(int)
colfile.addcolumn( iy, "iy")
colfile.NY = self.NY
# ensure tth, eta, gx, gy, gz are up-to-date
if self.parfile is not None:
colfile.parameters.loadparameters( self.parfile )
colfile.updateGeometry()
self.cache[fname] = colfile
return self.cache[fname]
"""
Script with functions to:
load/save grain reconstruction file
create new slices from hdf file with peaks
map one hdf group as one peaksfile and discrete orientation
reconfile (3D)
slice1grain1(2D) == hdfgroup
peakfile <- string filename (z001_all.hdf)
peakspath <- string full path (/data/.../z001_all.hdf)
(optional checksum on the peakfile?)
id,iy,io,h,k,l,sign(eta) <- n*[int,int,int,int,int]
id = index position in peakfile
iy = index position in dty
io = index position in omega [h,k,l,sign(eta)]
h,k,l = assigned integers for this orientation
sign(eta) : which side of the detector
sinogram <- nangles * npoints(dty)
recon <- npoints * npoints(dty)
Might be in hdf file as:
/z000/grain0/
/z000/grain1/
/z000/grain2/
/z000/grain3/
/z001/grain0/
or instead:
/grain0/z0/
/grain0/z1/
/grain0/z2/
....
/grain1/z0/
load / save 2D slices to hdf groups
"""
def hkl_err( ubi, gve, errwt=(1,0.25,1) ):
"""
Computes integer hkl for each peak
Computes error in some g-vector based units
errwt = tth_direction, omega_direction, eta_direction
returns
integer h,k,l
err = errwt * (e0,e1,e2)
"""
assert ubi.shape == (3,3)
assert gve.shape[0] == 3
hkl = np.dot( ubi, gve )
ihkl = np.round( hkl )
gcalc = np.dot( np.linalg.inv( ubi ), ihkl )
# error in g-vector ...
gerr = gcalc - gve
assert gerr.shape[0] == 3
#
# Decompose this into 3 directions ...
# along gve = gerr . g / |g|
# perp to gve and z
# perp to both
# 1/|g|
modg = np.sqrt( (gve*gve).sum(axis=0) )
# normalised vector along the g-vector (two theta direction)
x,y,z = gve/modg
# radial error is gve . gerr
ng0 = np.array( (x,y,z) )
# omega error is (gve x axis=001) . gerr
# ... cross( gve, (0,0,1) )
# Normalise this to unit length
ng1 = np.array(( -y, x, np.zeros(z.shape))) / np.sqrt( y*y + x*x )
# eta error makes right handed set
ng2 = np.array(( x*z, y*z, -x*x-y*y))
ng2 = ng2 / np.sqrt(( ng2*ng2 ).sum(axis=0))
e0 = ((gerr * ng0)**2).sum(axis=0)
e1 = ((gerr * ng1)**2).sum(axis=0)
e2 = ((gerr * ng2)**2).sum(axis=0)
# We mainly care about 2theta / eta error
err = np.sqrt( errwt[0]*e0 + errwt[1]*e1 + errwt[2]*e2 )
e = ihkl, err # , e0, e1, e2
return e
def loadslice( grp ):
"""
loads reconstruction from 3D grain file (many slices, 1 grain)
grp = hdf5 group
NOT TESTED YET !
"""
try:
name = grp.attrs['pksfile']
allpks = getcolumnfile( name )
except:
print("Could not get your columnfile")
print("pksfile", grp.attrs['pksfile'] )
print("pksfilepath", grp.attrs['pksfilepath'] )
raise
ubi = grp.ubi[:]
items = "pkid", "iy", "io", "hkle", "sinogram", "angles", "recon"
argdict = {}
for arrayname in items:
if arrayname in grp:
argdict[ arrayname ] = grp[ arrayname ][:]
return grain_recon_slice( allpks, ubi, **argdict )
class grain_recon_slice( object ):
"""
A 2D sinogram reconstruction
must hold the minimum info
"""
def __init__(self, allpks, ubi,
pkid = None,
iy = None,
io = None,
hkle = None,
sinogram = None,
angles= None,
recon = None ):
"""
allpks is a reference to the columnfile holding *all* the peaks
ubi = (3x3) orientation [ [a], [b], [c] ] lattice vectors
pkid = assigned peaks in allpks [ id = allpks[id] ] (npks)
iy, io = position on sinogram [ iy, iomega ] (npks)
hkle = h,k,l,sign(eta) for peaks in pkid
(4, npks)
sinogram = float, (nuniq, ny)
angles = float, (nuniq,)
recon = float, (ny, ny)
"""
self.allpks = allpks # NOT SAVED, referenced by attrs[]
self.ubi = ubi # orientation matrix
self.pkid = pkid # indexing in peaksfile
self.iy = iy # iy
self.io = io # iomega
self.hkle = hkle # h,k,l,sign(eta) of used peaks
self.sinogram = sinogram # sinogram [nuniq x NY]
self.angles = angles # angles [nuniq]
self.recon = recon # reconstruction of intensity
def save(self, grp):
"""
save into a file (should work)
assuming all items are filled in for now...
"""
grp.attrs["pksfile"]= self.allpks.filename
grp.attrs["pksfilepath"] = os.path.abspath( self.allpks.filename )
# ubi average orientation - always 3x3
grp.require_dataset( "ubi",
shape = (3,3),
dtype = np.float,
data = self.ubi )
# peak labels :
# (id,)
grp.require_dataset( "pkid",
shape = self.pkid.shape,
maxshape = (None,),
dtype = np.int32,
data = self.pkid)
# iy, iomega:
grp.require_dataset( "iy",
shape = self.iy.shape,
maxshape = (None,),
dtype = np.int32,
data = self.iy)
grp.require_dataset( "io",
shape = self.io.shape,
maxshape = (None,),
dtype = np.int32,
data = self.io)
# hkls can grow or shrink if we use or dont use peaks ...
# ... depends on gve error cutoff
grp.require_dataset( "hkle",
shape = self.hkle.shape,
dtype = np.int32,
maxshape = ( None, 4),
data = self.hkle )
# again, shrinks and grows
grp.require_dataset( "sinogram",
shape = self.sinogram.shape,
dtype = np.float,
maxshape = (None, self.recon.shape[0]),
data = self.sinogram )
grp.require_dataset( "angles",
shape = self.angles.shape,
dtype = np.float,
maxshape = (None,),
data = self.angles )
# again, shrinks and grows
grp.require_dataset( "recon",
shape = self.recon.shape,
dtype = np.float,
data = self.recon )
# always NY x NY size [top of this file]
def check( self ):
"""
test things look OK
"""
npks = len(self.pkid)
assert self.hkle.shape == (npks, 4)
nangles = self.angles.shape[0]
ny = self.recon.shape[0]
assert self.sinogram.shape == (nangles,ny),self.sinogram.shape+(
nangles,ny)
assert self.recon.shape == (ny,ny)
# print("check looks OK")
def choosepeaks( self, gerrtol=None):
"""
Decide which peaks from self.allpks that we want to use
Fills in pkid and hkle
"""
c = self.allpks
gve = np.array( (c.gx,c.gy,c.gz) )
ihkl, err = hkl_err( self.ubi, gve )
# select peaks within tolerance
if gerrtol is None:
m = 0.05
ct = (err < m).sum()
h,b = np.histogram( err, np.linspace(0, m, int(ct/20) ) )
pl.plot( b[1:],h,"-")
pl.title("npks versus error")
pl.show()
# py2/3 thing:
gerrtol = float( input( "Enter cut off gerrtol: ") )
m0 = err < gerrtol
npks = m0.sum()
self.pkid = np.arange(0,c.nrows,dtype=np.int32)[m0]
h,k,l = ihkl[:,m0]
se = np.sign(c.eta[m0])
self.hkle = np.array( ( h,k,l,se), np.int32).T
def makesino( self ):
"""
NY = number of points in Y scan <- global
iy = y index positions from self.allpks
omega = omega angles from self.allpks
h,k,l,se = labels to get uniq peaks (se == sign(eta))
intensities = peak intensities
fills in
self.angles = <omega> for projection
self.sinogram[na,NY] = (max) intensity at each iy/uniq angle
self.iy, self.io = indexing for peak into sinogram
"""
npks = len(self.pkid)
assert self.hkle.shape == (npks, 4), self.hkle.shape
## FIXME : sortable thing is [h,k,l,se,iy]
## ...go through in order assigning io
h,k,l,se = self.hkle.T
iy = self.allpks.iy[ self.pkid ].astype( np.int32 )
# numpy lexsort : sorts axis by axis
# hklsy = np.array( (h,k,l,se,iy,self.pkid) )
hklsy = np.array( (self.pkid,iy,se,l,k,h) )
order = np.lexsort( hklsy )
# find out how many projections we have
io = np.zeros( npks, np.int32 )
iproj = 0
current = hklsy[2:,order[0]]
# i_omega
for i in order:
t = hklsy[2:,i] # h,k,l,se
if not (t == current).all():
current = t
iproj += 1
io[ i ] = iproj
self.iy = iy
self.io = io
self.nproj = iproj + 1
self.fill_sinogram()
def fill_sinogram(self):
# now fill in the sinogram
self.sinogram = np.zeros((self.nproj, self.allpks.NY))
self.angles = np.zeros((self.nproj,self.allpks.NY))
intensities = self.allpks.sum_intensity[ self.pkid ]
# Not needed unless you are masking
assert intensities.min() >= 0
# Now fill in the intensities and angles
omega = self.allpks.omega[ self.pkid ]
io = self.io
iy = self.iy
for i in range( len(self.pkid) ):
t = self.sinogram[ io[i], iy[i]]
if intensities[i] > t:
self.sinogram[ io[i], iy[i]] = intensities[i]
self.angles[io[i],iy[i]] = omega[i]
# We do the intensity weighted average for omega
self.angles = (self.angles*self.sinogram).sum(axis=1) / self.sinogram.sum(axis=1)
# normalise intensity
self.sinogram = self.sinogram/self.sinogram.max(axis=1)[:, np.newaxis]
def sort_omega( self ):
"""
put the projections in order
"""
# return
# import pdb; pdb.set_trace()
order = np.argsort(self.angles)
self.angles = self.angles[order]
# self.sinogram = self.sinogram[ order ]
inew = np.zeros( self.io.shape, np.int32 )
for i,j in enumerate(order):
inew = np.where( self.io == j, i, inew )
iold = self.io.copy()
self.io = inew
self.fill_sinogram()
if 0:
pl.figure(1)
pl.subplot(221)
pl.imshow( self.sinogram.T.copy(), aspect='auto')
pl.title("original")
self.fill_sinogram()
pl.subplot(222)
pl.imshow( self.sinogram.T.copy(), aspect='auto')
pl.title("After fill")
pl.subplot(223)
pl.plot( iold, self.iy, ",")
pl.title("iold")
pl.subplot(224)
pl.title("inew")
pl.plot( inew, self.iy, ",")
pl.show()
def run_iradon(self):
"""
Fills in self.recon from self.sinogram and self.angles
"""
self.recon = iradon( self.sinogram.T, self.angles, circle=True )
def clean(self, cctol=None):
"""
Apply a tolerance in cor-coeff on projections
to kill the worst ones
(should work)
"""
# scalc is "self-consistent", just reverse transform
scalc = radon( self.recon, self.angles, circle=True ).T
# Scor each angle project to see how well it fits
scors = np.array( [np.corrcoef(self.sinogram[i], scalc[i])[1,0]
for i in range(len(self.angles))] )
# apply a correlation coefficient cutoff
if cctol is None:
doplot = True
pl.figure(2, figsize=(15,15))
pl.subplot(321)
pl.plot( self.angles, scors, "o")
pl.subplot(322)
pl.hist( scors, np.linspace(-1,1,len(scors)/10.))
pl.subplot(323)
pl.imshow( scalc.T, aspect='auto' )
pl.subplot(324)
pl.imshow( self.sinogram.copy().T, aspect='auto')
pl.title(self.sinogram.shape)
# might change of py3/py2
cct = float( input( "Enter cut off for cctol: ") )
else:
cct = cctol
doplot = False
io = self.io # i_omega indices of peaks to sinogram
msk = np.zeros( len(io), np.bool )
# loop over projections
for i in range(len(self.angles)):
if scors[i] > cct:
# keep
msk = msk | (io == i)
# filter peak list according to masking
if msk.sum() < 10:
return
if doplot:
pl.subplot(325)
pl.plot( io[msk], self.iy[msk], "o")
pl.plot( io[~msk], self.iy[~msk], "+")
self.pkid = self.pkid[msk]
self.hkle = self.hkle[msk]
self.makesino()
self.sort_omega()
self.run_iradon()
if doplot:
pl.subplot(326)
pl.imshow( self.sinogram.copy().T, aspect='auto')
pl.title(self.sinogram.shape)
pl.show()
def create_slice( colfile, ubi,
gerrtol = None,
cctol = None):
"""
given a columnfile
ubi matrix this assign peaks and creates a "slice"
gerrtol = cutoff for assignment of peaks to ubi
cctol = cutoff for correlation coefficient on sino - recon
return a grain_recon_slice object
"""
global ymin, ystep
# read the datafile with the spots
#
slc = grain_recon_slice( colfile, ubi )
#
# Compute the hkl error for this UBI matrix
# and decide which peaks to use
slc.choosepeaks( gerrtol )
print(slc.pkid.shape)
#
# Make an initial sinogram (may contain overlaps)
slc.makesino()
slc.sort_omega()
print(slc.pkid.shape)
#
# Make a reconstruction
slc.run_iradon()
# debugging
slc.check()
slc.clean( cctol )
slc.check()
print("After clean",slc.pkid.shape)
return slc
def recon_all_peaks( colfile, mask = None, abins = 180 ):
"""
Does a reconstruction of all peaks in a columnfile
ignoring the hkl indexing and intensity normalisation
"""
if mask is None:
s = np.histogram2d( colfile.omega,
colfile.iy,
bins=(abins,colfile.NY) )
else:
s = np.histogram2d( colfile.omega[mask],
colfile.iy[mask],
bins=(abins,colfile.NY) )
r = iradon( s[0].T, circle=True )
return r
if __name__=="__main__":
pksfile = sys.argv[1]
parfile = sys.argv[2]
ccache = colfilecache( ymin=13.5,
ymax=14.91,
ystep=0.02,
parfile=parfile )
colfile = ccache.get( pksfile )
grains = grain.read_grain_file( sys.argv[3] )
mapfilename = sys.argv[4]
mapf = h5py.File( mapfilename, "w" )
# pl.ion()
for k in range(len(grains)):
ubi = grains[k].ubi
slc = create_slice( colfile, ubi, gerrtol = 0.01, cctol =0.9)# None )
grp = mapf.require_group("grain_%d"%(k))
slc.save( grp )
pl.figure(1)
pl.imshow(slc.recon)
pl.title("%d %s"%(k,slc.allpks.filename))
pl.show()
mapf.flush()
mapf.close()
sys.exit()
# rnice8-0207:~/id11/merged_peaks % ipython -i dorecon_grain.py z500_all.hdf fit.par no_duplicates/t.ubi test1.hdf