-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathpoint_by_point_fit_cleaned.py
440 lines (379 loc) · 14.5 KB
/
point_by_point_fit_cleaned.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
from __future__ import print_function, division
# Attempt to fit "strain" by refining unit cell parameters at
# each point on a sinogram.
import sys
import numpy as np, pylab as pl
from scipy.optimize import leastsq
import scipy.sparse
from skimage.transform import iradon, radon
from ImageD11 import columnfile, refinegrains, parameters, grain, transform, \
indexing, cImageD11
def calc_tth_eta_omega( ub, hkls, pars, etasigns ):
"""
Predict the tth, eta, omega for each grain
ub = ub matrix (inverse ubi)
hkls = peaks to predict
pars = diffractometer info (wavelength, rotation axis)
etasigns = which solution for omega/eta to choose (+y or -y)
"""
g = np.dot( ub, hkls )
tthcalc, eta2, omega2 = transform.uncompute_g_vectors(
g,
pars.get('wavelength'),
wedge=pars.get('wedge'),
chi=pars.get('chi') )
# choose which solution (eta+ or eta-)
e0 = np.sign(eta2[0]) == etasigns
etacalc = np.where( e0, eta2[0], eta2[1] )
omegacalc = np.where( e0, omega2[0], omega2[1] )
return tthcalc, etacalc, omegacalc
def update_mask( mygr, flt, pars, nmedian ):
"""
Remove 5*median_error outliers from grains assigned peaks
This routine fills in mygr.mask and mygr.hkl
"""
# obs data for this grain
tthobs = flt.tth[ mygr.mask ]
etaobs = flt.eta[ mygr.mask ]
omegaobs = flt.omega[ mygr.mask ]
gobs = np.array( (flt.gx[mygr.mask], flt.gy[mygr.mask], flt.gz[mygr.mask]) )
# hkls for these peaks
hklr = np.dot( mygr.ubi, gobs )
hkl = np.round( hklr )
# Now get the computed tth, eta, omega
etasigns = np.sign( etaobs )
mygr.hkl = hkl.astype(int)
mygr.etasigns = etasigns
tthcalc, etacalc, omegacalc = calc_tth_eta_omega(
mygr.ub, hkl, pars, etasigns )
# update mask on outliers
dtth = (tthcalc - tthobs)
deta = (etacalc - etaobs)
domega = (omegacalc - omegaobs)
msk = abs( dtth ) > np.median( abs( dtth ) ) * nmedian
msk |= abs( deta ) > np.median( abs( deta ) ) * nmedian
msk |= abs( domega)> np.median( abs( domega ) ) * nmedian
allinds = np.arange( flt.nrows )
mygr.mask[ allinds[mygr.mask][msk] ] = False
return msk.astype(int).sum()
def calc_teo_fit( ub, flt, pars, gr):
"""
Function for refining ub using tth, eta, omega data
ub is the parameter array to fit
flt is all the data
pars in the diffractometer geometry to get tthcalc, etacalc, omegacalc
gr is the grain holding the peak assignments
flt.wtth, weta, wometa = weighting functions for tth vs eta vs omega errors
"""
UB = np.array(ub)
UB.shape=3,3
tthcalc, etacalc, omegacalc = calc_tth_eta_omega(
UB, gr.hkl, pars, gr.etasigns )
dtth = ( flt.tth[ gr.mask ] - tthcalc ) * flt.wtth[ gr.mask ]
deta = ( flt.eta[ gr.mask ] - etacalc ) * flt.weta[ gr.mask ]
domega = ( flt.omega[ gr.mask ] - omegacalc ) * flt.womega[ gr.mask ]
return np.concatenate( (dtth, deta, domega) )
def estimate_weights( pars, flt, OMSLOP ):
distance = pars.get('distance')
pixelsize = ( pars.get('y_size') + pars.get('z_size') ) / 2.0
# 1 pixel - high energy far detector approximation
wtth = np.ones(flt.nrows)/ np.degrees( pixelsize / distance )
weta = wtth * np.tan( np.radians( flt.tth ) )
womega = np.ones(flt.nrows)/OMSLOP
print("Weights:")
print(" tth:",wtth[0] )
print(" eta:",weta.min(),weta.max(),weta.mean())
print(" omega:",womega[0] )
return wtth, weta, womega
def fit_one_grain( gr, flt, pars ):
"""
Uses scipy.optimize to fit a single grain
"""
# print("Cell before:",("%.6f "*6)%( indexing.ubitocellpars( gr.ubi )))
args = flt, pars, gr
x0 = gr.ub.ravel().copy()
try:
ret = leastsq( calc_teo_fit, x0, args, full_output=True )
xf, cov_v, info, mesg, ier = ret
except:
xf = x0
print(ier, mesg)
print(ret)
raise
ub = xf.copy()
ub.shape = 3,3
ubi = np.linalg.inv(ub)
# print("Cell after :",("%.6f "*6)%( indexing.ubitocellpars( ubi ) ))
gr.set_ubi( ubi )
def update_cols( flt, pars, OMSLOP ):
"""
update the twotheta, eta, g-vector columns to be sure they are right
fill in some weighting estimates for fitting
"""
tth, eta = transform.compute_tth_eta( [flt.sc, flt.fc], **pars.parameters )
gve = transform.compute_g_vectors( tth, eta, flt.omega,
pars.get('wavelength'),
wedge=pars.get('wedge'),
chi=pars.get('chi') )
flt.addcolumn( tth , "tth" )
flt.addcolumn( eta , "eta" )
# Compute the relative tth, eta, omega errors ...
wtth, weta, womega = estimate_weights( pars, flt, OMSLOP )
flt.addcolumn( wtth, "wtth" )
flt.addcolumn( weta, "weta" )
flt.addcolumn( womega, "womega" )
flt.addcolumn( gve[0], "gx" )
flt.addcolumn( gve[1], "gy" )
flt.addcolumn( gve[2], "gz" )
return tth, eta, gve
def assign_peaks( grains, gve, flt, pars, nmedian, hkltol ):
"""
Assign peaks to grains for fitting
- each peak chooses the spots it likes
- overlapping spots (chosen by more than 1 grain) are removed
- fit outliers are removed abs(median err) > nmedian
Fills in grain.mask for each grain
"""
for i, g in enumerate(grains):
# For each grain we compute the hkl integer labels
hkl = np.dot( g.ubi, gve )
hkli = np.round( hkl )
# Error on these:
drlv = hkli - hkl
drlv2 = (drlv*drlv).sum(axis=0)
# Tolerance to assign to a grain is rather poor
g.mask = drlv2 < hkltol*hkltol
print( "Grain",i,"npks",(g.mask.astype(int)).sum())
print("Checking for peaks that might overlap")
overlapping = np.zeros( flt.nrows, dtype=bool )
for i in range(len(grains)):
for j in range(i+1,len(grains)):
overlapping |= grains[i].mask & grains[j].mask
print("Total peaks",flt.nrows,"overlapping",overlapping.astype(int).sum())
for i, g in enumerate(grains):
g.mask &= ~overlapping
print( "Grain",i,"npks",(g.mask.astype(int)).sum(),end=" " )
print("update mask",end=" ")
while 1:
ret = update_mask( g, flt, pars, nmedian=nmedian )
print(ret,end=" ")
if ret == 0:
break
print(g.mask.astype(int).sum())
def fit_dty( g, flt ):
"""
Fit a sinogram to get a grain centroid
"""
dty = flt.dty[ g.mask ]
romega = np.radians( flt.omega[ g.mask ] )
co = np.cos( romega )
so = np.sin( romega )
# calc = d0 + x*co + y*so
# dc/dpar : d0 = 1
# : x = co
# : y = so
# gradients
g = [ np.ones( dty.shape, float ), co, so ]
nv = len(g)
m = np.zeros((nv,nv),float)
r = np.zeros( nv, float )
for i in range(nv):
r[i] = np.dot( g[i], dty )
for j in range(i,nv):
m[i,j] = np.dot( g[i], g[j] )
m[j,i] = m[i,j]
sol = np.dot(np.linalg.inv( m ), r)
return sol
def uniq( vals ):
d = {}
newvals = []
for v in vals:
if v not in d:
d[v]=0
newvals.append(v)
return newvals
def map_grain( g, flt, ymin, ystep, omegastep ):
"""
Computes sinogram
Runs iradon
Returns angles, sino, recon
"""
iy = np.round( (flt.dty[ g.mask ] - ymin) / ystep ).astype(int)
omega = np.round( flt.omega[ g.mask ] / omegastep ).astype(int)
assert g.mask.sum() == g.etasigns.shape[0]
assert g.mask.sum() == g.hkl.shape[1]
keys = [ (hkl[0], hkl[1], hkl[2], int(s))
for hkl, s in zip(g.hkl.T , g.etasigns)]
uni = uniq(keys)
akeys = np.array( keys )
sum_intensity = flt.sum_intensity[ g.mask ]
assert (sum_intensity > 0).all(), "peaks are positive"
NY = 71
npks = len( uni )
sino = np.zeros( ( npks, NY ), np.float )
angs = np.zeros( ( npks, NY ), np.float )
for refi,u in enumerate(uni):
# h==h, k==k, l==l, sign==sign
mask = (akeys == u).astype(int).sum(axis=1) == 4
dtypos = iy[mask]
intensities = sum_intensity[mask]
angles = omega[mask]
ndup = 0
for yindex, counts, omegapk in zip( dtypos, intensities, angles ):
# Take strongest if more than one
if counts > sino[refi][yindex]:
sino[refi][yindex] = counts
angs[refi][yindex] = omegapk
continue
if sino[refi][yindex] > 0:
ndup += 1
# if ndup > 0:
# print(ndup,"duplicates!")
sinoangles = np.sum( angs, axis = 1) / np.sum( sino > 0, axis = 1)
# Normalise:
sino = (sino.T/sino.max( axis=1 )).T
# Sort (cosmetic):
order = np.argsort( sinoangles )
sinoangles = sinoangles[order]
ssino = sino[order].T
# Reconstruct
output_size = int( NY*1.5 )
recon = iradon( ssino, theta=sinoangles, output_size=output_size,
circle = False )
if 0:
# code to clean up sinogram - didn't help
calcsino = radon( recon, theta=sinoangles, circle = False )
px0 = calcsino.shape[0]//2 - ssino.shape[0]//2
cs = calcsino[ px0 : px0 + ssino.shape[0] ]
error = (ssino - cs)
medabserr = np.median( abs( error.ravel() ) )
cleanedsino = np.where( abs(error) >5*medabserr, cs, ssino )
recon = iradon( cleanedsino, theta=sinoangles,
output_size=output_size, circle = False )
return sinoangles, ssino, recon
def fit_one_point( g, flt, pars, ix, iy, ystep ):
"""
Take each time the nearest point in dty (not the mask!)
"""
om = np.radians( flt.omega[g.mask] )
co = np.cos( om )
so = np.sin( om )
idtycalc = np.round(-ix * so + iy * co)
idty = flt.idty[g.mask] # np.round(flt.dty[ g.mask ] / ystep)
# m = abs(dty - dtycalc) < ystep*0.75
m = idtycalc == idty
if 0:
pl.figure()
pl.plot( om, idty, "+")
pl.plot( om, idtycalc, ".")
pl.show()
grfit = grain.grain( g.ubi )
grfit.hkl = g.hkl[:,m]
grfit.etasigns = g.etasigns[m]
inds = np.arange( flt.nrows, dtype=int )
grfit.mask = np.zeros( flt.nrows, np.bool )
grfit.mask[ inds[g.mask][m] ] = True
fit_one_grain( grfit, flt, pars )
return grfit
def make_sino( g, flt, pars, ymin, ystep):
"""
Computes sinogram
Builds up a sparse least square problem
method = 'nearest' use the nearest pixel
= 'bilinear' for bilinear interpolation
"""
# integer values of dty/omega for binning
iy = flt.idty[ g.mask ]
omega = np.round( flt.omega[ g.mask ] / omegastep ).astype(int)
# observed peaks grouped into projections via h,k,l,sign(eta)
keys = [ (hkl[0], hkl[1], hkl[2], int(s))
for hkl, s in zip(g.hkl.T , g.etasigns)]
uni = uniq(keys)
akeys = np.array( keys )
# sum of the peak intensity is to be fitted
# eventually add tth, eta, omega
sum_intensity = flt.sum_intensity[ g.mask ]
assert (sum_intensity > 0).all(), "peaks are positive"
# Ysteps for the sinogram
NY = flt.NY
npks = len( uni )
sino = np.zeros( ( npks, NY ), np.float )
angs = np.zeros( ( npks, NY ), np.float )
# For reconstructing later : pmat is density. Will also need ub ...
pmat = np.zeros( ( NY, NY ), np.float )
# Fill the sinogram
for refi,u in enumerate(uni):
# h==h, k==k, l==l, sign==sign
mask = (akeys == u).astype(int).sum(axis=1) == 4
dtypos = iy[mask]
intensities = sum_intensity[mask]
angles = omega[mask]
ndup = 0
for yindex, counts, omegapk in zip( dtypos, intensities, angles ):
# Take strongest if more than one
if counts > sino[refi][yindex]:
sino[refi][yindex] = counts
angs[refi][yindex] = omegapk
continue
if sino[refi][yindex] > 0:
ndup += 1
if ndup > 0:
print(ndup,"duplicates!")
# average along y
sinoangles = np.sum( angs, axis = 1) / np.sum( sino > 0, axis = 1)
# Normalise (allows for hkl,eta intensity variation)
sino = (sino.T/sino.max( axis=1 )).T
# Now construct a least squares problem. For each pixel in the sinogram
# compute the derivative with respect to pmat[i,j].
idtycalc = np.round(-ix * so + iy * co)
return sinoangles, ssino, recon
from pylab import *
def map_out_cell( g, flt ):
sol = fit_dty( g, flt )
print("#",sol)
return sol
def main():
flt = columnfile.columnfile( sys.argv[1] )
grains = grain.read_grain_file( sys.argv[2] )
pars = parameters.read_par_file( sys.argv[3] )
newgrainfile = sys.argv[4]
hkltol = 0.05 # for first peak assignments
nmedian = 5 # for removing peak fit outliers
omegastep = 1.0 # for omega images
ymin = 13.5 # dty start (so -15 -> +15 in 0.25 steps)
ystep = 0.02 # step in dty from scan
rcut = 0.2 # cutoff for segmentation of reconstruction
flt.filter( flt.dty >= ymin )
flt.idty = np.round((flt.dty - ymin)/ystep).astype(np.int32) - 35
flt.NY = 71 # flt.idty.max()+1
OMSLOP = omegastep / 2.0
tth, eta, gve = update_cols( flt, pars, OMSLOP )
assign_peaks( grains, gve, flt, pars, nmedian, hkltol )
# pl.ioff()
print("\n\n")
out = open( newgrainfile, "w" )
out.write("# grain ix iy npks ubi00 ubi01 ubi02 ubi10 ubi11 ubi12 ubi20 ubi21 ubi22\n")
for i,g in enumerate(grains):
print("# Grain:",i)
fit_one_grain( g, flt, pars )
y0,x,y = map_out_cell( g, flt )
sinoangles, sino, recon = map_grain( g, flt, ymin, ystep, omegastep )
if 0:
pl.subplot(211)
pl.imshow( sino )
pl.subplot(212)
pl.imshow( recon )
pl.show()
active = recon > recon.max() * rcut
ii, jj = np.mgrid[ 0:recon.shape[0], 0:recon.shape[0] ] - recon.shape[0]//2
for ix, iy in zip(ii[active], jj[active]):
gf = fit_one_point( g, flt, pars, ix, iy, ystep )
r = ("%-4d "*4)%(i,ix,iy,gf.mask.astype(int).sum())
print(r)
u = ("%.7f "*9)%tuple(gf.ubi.ravel())
out.write(r)
out.write(u+"\n")
g.translation = (x,y,0)
# grain.write_grain_file( newgrainfile, grains )
if __name__=="__main__":
main()