import pandas as pd
import os
Get Models
Separation
stats = pd.DataFrame(models)
stats["neurons"] = [to_class_scale(m).shape[1] for m in models]
stats.set_index(0,inplace=True)
stats["sep"] = [classes_seperation(to_class_scale(m)) for m in models]
stats["w"] = [(to_class_scale(m).values.mean(),to_class_scale(m).values.std())
for m in models]
stats["b"] = [(to_bias_scale(m).values.mean(),to_class_scale(m).values.std())
for m in models]
stats["o"] = [(to_object_scale(m).values.mean(),to_object_scale(m).values.std())
for m in models]
stats.to_csv("scales/stats_imagenet.csv")