-
SPAct: Self-supervised Privacy Preservation for Action Recognition. Ishan Rajendrakumar Dave, Chen Chen, Mubarak Shah CVPR 2022, eprint
-
PECAM: Privacy-Enhanced Video Streaming and Analytics via Securely-Reversible Transformation. Hao Wu, Xuejin Tian, Minghao Li, Yunxin Liu, Ganesh Ananthanarayanan, Fengyuan Xu, Sheng Zhong MobiCom 2021, eprint
-
Compressive Privacy Generative Adversarial Network. Bo-Wei Tseng, Pei-Yuan Wu TIFS 2020, eprint
-
IronMask: Modular Architecture for Protecting Deep Face Template. Sunpill Kim, Yunseong Jeong, Jinsu Kim, Jungkon Kim, Hyung Tae Lee and Jae Hong Seo CVPR 2021, eprint
-
Post-breach Recovery: Protection against White-box Adversarial Examples for Leaked DNN Models. Shawn Shan, Wenxin Ding, Emily Wenger, Haitao Zheng, Ben Y. Zhao CCS 2022, eprint
-
Blacklight: Scalable Defense for Neural Networks against Query-Based Black-Box Attacks. Huiying Li, Shawn Shan, Emily Wenger, Jiayun Zhang, Haitao Zheng, Ben Y. Zhao USENIX 2022, eprint
-
DataLens: Scalable Privacy Preserving Training via Gradient Compression and Aggregation. Boxin Wang, Fan Wu, Yunhui Long, Luka Rimanic, Ce Zhang, Bo Li CCS 2021, eprint
-
Protecting Facial Privacy: Generating Adversarial Identity Masks via Style-robust Makeup Transfer. Shengshan Hu, Xiaogeng Liu, Yechao Zhang, Minghui Li, Leo Yu Zhang, Hai Jin, Libing Wu CVPR 2022, eprint
-
Privacy-Preserving Image Features via Adversarial Affine Subspace Embeddings. Mihai Dusmanu, Johannes L. Schönberger, Sudipta N. Sinha, Marc Pollefeys CVPR 2021, eprint
-
Learning Privacy-preserving Optics for Human Pose Estimation. Carlos Hinojosa, Juan Carlos Niebles, Henry Arguello ICCV 2021, eprint