-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathbipart.go
464 lines (444 loc) · 12.3 KB
/
bipart.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
package gophy
import (
"fmt"
"sort"
"strconv"
"strings"
)
// Bipart are represented as map[int]bools, one for the left and one for the right
type Bipart struct {
Lt map[int]bool
Rt map[int]bool
Ct int // counts
TreeIndices []int // index of which trees this is in
Nds []*Node // nodes associated with the bipart
NdsM map[int]*Node // nodes associated with the bipart by treeindex
Index int // just a unique id
}
// StringWithNames converts the ints to the the strings from nmmap
func (b Bipart) StringWithNames(nmmap map[int]string) (ret string) {
for n := range b.Lt {
ret += nmmap[n] + " "
}
ret += "|"
for n := range b.Rt {
ret += " " + nmmap[n]
}
return
}
// NewickWithNames does similar things to StringWithNames but sends a newick back
func (b Bipart) NewickWithNames(nmmap map[int]string) (ret string) {
ret += "(("
count := 0
for n := range b.Lt {
ret += nmmap[n]
if count < len(b.Lt)-1 {
ret += ","
}
count++
}
ret += ")"
for n := range b.Rt {
ret += "," + nmmap[n]
}
ret += ");"
return
}
// Equals trying to be faster
func (b Bipart) Equals(ib Bipart) (eq bool) {
eq = false
if len(b.Rt) == len(ib.Rt) && len(b.Lt) == len(ib.Lt) {
// if the lengths of left and right are the same, we have to check a special case
// where they could be reversed
if len(b.Rt) == len(b.Lt) {
reverse := false
for m := range b.Rt {
if _, ok := ib.Rt[m]; !ok {
reverse = true
}
break
}
if reverse == false {
for m := range b.Rt {
if _, ok := ib.Rt[m]; !ok {
return
}
}
for m := range b.Lt {
if _, ok := ib.Lt[m]; !ok {
return
}
}
eq = true
return
}
for m := range b.Rt {
if _, ok := ib.Lt[m]; !ok {
return
}
}
for m := range b.Lt {
if _, ok := ib.Rt[m]; !ok {
return
}
}
eq = true
return
}
for m := range b.Rt {
if _, ok := ib.Rt[m]; !ok {
return
}
}
for m := range b.Lt {
if _, ok := ib.Lt[m]; !ok {
return
}
}
eq = true
return
} else if len(b.Rt) == len(ib.Lt) && len(b.Lt) == len(ib.Rt) {
for m := range b.Rt {
if _, ok := ib.Lt[m]; !ok {
return
}
}
for m := range b.Lt {
if _, ok := ib.Rt[m]; !ok {
return
}
}
eq = true
return
}
return
}
// ConflictsWith checks whether two biparts conflict
func (b Bipart) ConflictsWith(ib Bipart) (con bool) {
con = false
if IntMapIntersects(ib.Rt, b.Rt) && IntMapIntersects(ib.Rt, b.Lt) {
if IntMapIntersects(ib.Lt, b.Rt) && IntMapIntersects(ib.Lt, b.Lt) {
con = true
return
}
}
return
}
// ConcordantWith tests whether something is concordant (not conflicting or nested, etc)
func (b Bipart) ConcordantWith(ib Bipart) (con bool) {
con = false
if IntMapIntersects2(ib.Rt, b.Rt) && IntMapIntersects2(ib.Lt, b.Lt) {
if IntMapIntersects(ib.Rt, b.Lt) == false {
if IntMapIntersects(ib.Lt, b.Rt) == false {
con = true
return
}
} else {
return
}
}
if IntMapIntersects2(ib.Lt, b.Rt) && IntMapIntersects2(ib.Rt, b.Lt) {
if IntMapIntersects(ib.Rt, b.Rt) == false {
if IntMapIntersects(ib.Lt, b.Lt) == false {
con = true
return
}
} else {
return
}
}
return
}
// CompatibleWith checks that it isn't conflicting but can be nested
func (b Bipart) CompatibleWith(ib Bipart) (con bool) {
con = true
return
}
// BipartSliceContains checks to see if the bipart slice contains the bipart and returns the index
func BipartSliceContains(bps []Bipart, bp Bipart) (ind int) {
ind = -1
for i, value := range bps {
if value.Equals(bp) {
ind = i
return
}
}
return
}
// PConflicts is a parallel conflict check. The slice is sent. The jobs are the two indices to check.
// The results are the two indicies and an int 1 for conflict 0 for no conflict
func PConflicts(bps []Bipart, jobs <-chan []int, results chan<- []int) {
for j := range jobs {
in1, in2 := j[0], j[1]
b := 0
if bps[in1].ConflictsWith(bps[in2]) {
b = 1
}
results <- []int{in1, in2, b}
}
}
// PConflictsCompTree is similar to PConflict but the first index refers to the first Bipart slice and the second referts
// to the second Bipart slice
func PConflictsCompTree(bps []Bipart, comptreebps []Bipart, jobs <-chan []int, results chan<- []int) {
for j := range jobs {
in1, in2 := j[0], j[1]
b := 0
if bps[in1].ConflictsWith(comptreebps[in2]) {
b = 1
}
results <- []int{in1, in2, b}
}
}
// PConcordance is similar to the other comparison code but for concordance. The input jobs are the i, j for the bipart
// comparisons. The results are the i, j, and 0 for not concordant and 1 for concordant
func PConcordance(bps []Bipart, jobs <-chan []int, results chan<- []int) {
for j := range jobs {
in1, in2 := j[0], j[1]
b := 0
// there must be at least one difference in the Trees so it isn't just the same tree
if CalcSliceIntDifferenceInt(bps[in1].TreeIndices, bps[in2].TreeIndices) > 0 {
if bps[in1].ConcordantWith(bps[in2]) {
b = 1
}
}
results <- []int{in1, in2, b}
}
}
// PConcordanceTwoSets same as the one above but where there are two sets
func PConcordanceTwoSets(comp []Bipart, bps []Bipart, jobs <-chan []int, results chan<- []int) {
for j := range jobs {
in1, in2 := j[0], j[1]
b := 0
// there must be at least one difference in the Trees so it isn't just the same tree
if comp[in1].ConcordantWith(bps[in2]) {
b = 1
}
results <- []int{in1, in2, b}
}
}
// OutputEdges just print the edges
// mapints are int to string names for the taxa
// bps list of biparts
// ntrees number of trees
func OutputEdges(mapints map[int]string, bps []Bipart, ntrees int, verb bool) {
//sorted
nn := map[int][]int{}
var sortedCounts []int
for v := range bps {
nn[bps[v].Ct] = append(nn[bps[v].Ct], v)
}
for k := range nn {
sortedCounts = append(sortedCounts, k)
}
sort.Sort(sort.Reverse(sort.IntSlice(sortedCounts)))
var sortedBps []int
for _, m := range sortedCounts {
for _, k := range nn[m] {
sortedBps = append(sortedBps, k)
}
}
if verb == true {
fmt.Println("numintrees percintrees bipart lens")
} else {
fmt.Println("numintrees percintrees bipart")
}
for _, x := range sortedBps {
i := x
b := bps[x]
if verb == true {
//add the lengths of the edges
lns := make([]string, len(b.Nds))
for y, n := range b.Nds {
lns[y] = strconv.FormatFloat(n.Len, 'f', -1, 32)
}
fmt.Println(len(bps[i].TreeIndices), float64(len(bps[i].TreeIndices))/float64(ntrees), b.NewickWithNames(mapints), strings.Join(lns, ","))
} else {
fmt.Println(len(bps[i].TreeIndices), float64(len(bps[i].TreeIndices))/float64(ntrees), b.NewickWithNames(mapints))
}
}
}
// CompareTreeToBiparts take biparts from a set , comparetreebps, and compre them to another set bps
// this one is complicated so keep with it
func CompareTreeToBiparts(bps []Bipart, comptreebps []Bipart, workers int, mapints map[int]string, verbose bool, treeverbose bool, quiet bool) {
jobs := make(chan []int, len(bps)*len(comptreebps))
results := make(chan []int, len(bps)*len(comptreebps))
for w := 1; w <= workers; w++ {
go PConflictsCompTree(bps, comptreebps, jobs, results)
}
njobs := 0
for j := range comptreebps {
for i := range bps {
jobs <- []int{i, j}
njobs++
}
}
close(jobs)
compconfs := make(map[int][]int) // key is compbipart and value are the conflicts
allconfs := make(map[int]bool) // list of all the conflicting biparts from bps
compconfstrees := make(map[int]map[int]bool) //key is compbipart and value are the conflicting trees
for i := 0; i < njobs; i++ {
x := <-results
if x[2] == 1 {
compconfs[x[1]] = append(compconfs[x[1]], x[0])
allconfs[x[0]] = true
if _, ok := compconfstrees[x[1]]; !ok {
compconfstrees[x[1]] = make(map[int]bool)
}
for _, m := range bps[x[0]].TreeIndices {
compconfstrees[x[1]][m] = true
}
}
}
for x := range compconfs {
for _, n := range comptreebps[x].Nds {
n.SData["conf"] = strconv.Itoa(len(compconfstrees[x]))
n.FData["conf"] = float64(len(compconfstrees[x]))
}
}
/*
going to make a set of concordance biparts of the set of conflicting biparts
*/
jobs = make(chan []int, len(allconfs)*len(allconfs))
results = make(chan []int, len(allconfs)*len(allconfs))
for w := 1; w <= workers; w++ {
go PConcordance(bps, jobs, results)
}
njobs = 0
for i := range allconfs {
for j := range allconfs {
jobs <- []int{i, j}
njobs++
}
}
close(jobs)
bpsConcCounts := make(map[int]int) // key bipart index, value number of concordant bps
bpsConcTrees := make(map[int]map[int]bool) // key bipart index, value is list of concordant tree
compbpsConcTrees := make(map[int]map[int]bool) // key bipart index, value is list of concordant tree
for i := 0; i < njobs; i++ {
x := <-results
if x[2] == 1 {
if _, ok := bpsConcCounts[x[0]]; ok {
bpsConcCounts[x[0]]++
} else {
bpsConcCounts[x[0]] = 0
bpsConcTrees[x[0]] = make(map[int]bool)
}
if _, ok := bpsConcCounts[x[1]]; ok {
bpsConcCounts[x[1]]++
} else {
bpsConcCounts[x[1]] = 0
bpsConcTrees[x[1]] = make(map[int]bool)
}
if verbose || treeverbose {
for _, m := range bps[x[0]].TreeIndices {
bpsConcTrees[x[0]][m] = true
bpsConcTrees[x[1]][m] = true
}
for _, m := range bps[x[1]].TreeIndices {
bpsConcTrees[x[0]][m] = true
bpsConcTrees[x[1]][m] = true
}
}
}
}
// verbose comp concordance with bps
if verbose || treeverbose {
jobs = make(chan []int, len(comptreebps)*len(bps))
results = make(chan []int, len(comptreebps)*len(bps))
for w := 1; w <= workers; w++ {
go PConcordanceTwoSets(comptreebps, bps, jobs, results)
}
njobs = 0
for i := range comptreebps {
for j := range bps {
jobs <- []int{i, j}
njobs++
}
}
close(jobs)
for i := 0; i < njobs; i++ {
x := <-results // x[0] is compbpsindex, x[1] is bpsindex
if x[2] == 1 {
if _, ok := compbpsConcTrees[x[0]]; !ok {
compbpsConcTrees[x[0]] = make(map[int]bool)
}
for _, m := range bps[x[1]].TreeIndices {
compbpsConcTrees[x[0]][m] = true
}
}
}
}
/*
sorting the results so that the larger bps are listed first. stop printing after a few.
add a sys command for listing all the results
*/
minout := 100
// add things that don't conflict so that we can get concordance
if verbose || treeverbose {
for x := range comptreebps {
if _, ok := compconfs[x]; !ok {
if verbose {
fmt.Print("(", comptreebps[x].Index, ") ", comptreebps[x].NewickWithNames(mapints)+"\n")
fmt.Print(" conctrees [", len(compbpsConcTrees[x]), "]: ", IntMapSetString(compbpsConcTrees[x])+"\n")
}
//need to put these at the nodes for concordant
for _, n := range comptreebps[x].Nds {
n.SData["conc"] = strconv.Itoa(len(compbpsConcTrees[x]))
n.FData["conc"] = float64(len(compbpsConcTrees[x]))
}
}
}
}
for x, y := range compconfs {
if !quiet {
fmt.Print("(", comptreebps[x].Index, ") ", comptreebps[x].NewickWithNames(mapints)+"\n")
}
if verbose {
fmt.Print(" conctrees [", len(compbpsConcTrees[x]), "]: ", IntMapSetString(compbpsConcTrees[x])+"\n")
fmt.Print(" conftrees [", len(compconfstrees[x]), "]: ", IntMapSetString(compconfstrees[x])+"\n")
}
// put the number of conc at the internal nodes
for _, n := range comptreebps[x].Nds {
n.SData["conc"] = strconv.Itoa(len(compbpsConcTrees[x]))
n.FData["conc"] = float64(len(compbpsConcTrees[x]))
}
n := map[int][]int{}
var a []int
for _, v := range y {
//n[bpsCounts[v]] = append(n[bpsCounts[v]], v)
n[bpsConcCounts[v]] = append(n[bpsConcCounts[v]], v)
if verbose || treeverbose {
if _, ok := bpsConcTrees[v]; !ok {
bpsConcTrees[v] = make(map[int]bool)
}
for _, m := range bps[v].TreeIndices {
bpsConcTrees[v][m] = true
}
}
}
for k := range n {
a = append(a, k)
}
sort.Sort(sort.Reverse(sort.IntSlice(a)))
count := 0
for _, k := range a {
for _, s := range n[k] {
//s is the bps index, k is the count
//fmt.Print(" ", bpsCounts[s], " "+bps[s].NewickWithNames(mapints)+"\n")
if !quiet {
fmt.Print(" ", "(", bps[s].Index, ") ", bps[s].Ct, " ", len(bpsConcTrees[s]), " ", bpsConcCounts[s], " "+bps[s].NewickWithNames(mapints)+"\n")
}
if verbose {
fmt.Print(" trees [", len(bpsConcTrees[s]), "]:", IntMapSetString(bpsConcTrees[s]), "\n")
}
if count >= 10 {
break
}
count++
}
if count >= minout {
break
}
}
}
}