-
Notifications
You must be signed in to change notification settings - Fork 53
/
Copy pathgenerate_data.m
211 lines (193 loc) · 7.08 KB
/
generate_data.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
function [data,W,H,V_hat] = generate_data(T,Nneurons,Dt,NeuronNoise,SeqNoiseTime,SeqNoiseNeuron,shared,diff,stretch,bin,seed)
%rng(2001)
if seed == 0
rng shuffle
else
rng(seed)
end
%stretch = 0;
additional_neurons = 0;
non_sparse = 1;
if shared
Nneurons = [Nneurons;Nneurons(1)];
Dt = [Dt;Dt(1)];
SeqNoiseTime = [SeqNoiseTime;SeqNoiseTime(1)];
SeqNoiseNeuron = [SeqNoiseNeuron;SeqNoiseNeuron(1)];
end
%% Parameters
% V = data.sequences(10000,randi(10,2,1)+5,randi(4,2,1),.01,rand(2),ones(2,1)*0.95);
% Nneurons = [5,15,10,8]; % the number of neurons in each sequence
% Dt = [2,1,3,3]; % the number of time steps between each neuron in the sequence
% Pseq = []; % the probability of the sequence occuring
% NeuronNoise = 0.01; % the noise in a neurons firing rate
% SeqNoiseTime = [0.2,0.2,0.1,0.1]; % the noise in the sequence aka jitter (p of each neuron jittered 1 dt)
% SeqNoiseNeuron = [0.95,0.95,0.95,0.95]; % the probability that a neuron participates in a given seq
% T = 1000;
% Share = []; % the propotion of the chain that is shared in other sequences
%% Calculate useful things
N = sum(Nneurons)+additional_neurons; % Total number of neurons
nseq = length(Nneurons); % The number of sequences
lseq = Dt.*Nneurons; % the length of each sequences
j = 1;
neurons = {};
for ii = 1:length(Nneurons)
neurons{ii} = j:j+Nneurons(ii)-1;
j = j+Nneurons(ii);
end
%% MAKE H's
xx = zeros(1,T);
H = zeros(nseq,T);
%randomly distribute seq starting points preventing the same sequence from initiation during itself
% for ii = 1:length(lseq)
% pos(ii,:) = cumsum(randi(lseq(ii)+50,50,1)+lseq(ii)); %sp sets how often the seq happen
% temp = pos(ii,:);
% H(ii,temp(temp<T))= 1;
% % H(ii,logical(xx)) = 0;
% % for jj = 1:length(pos(ii,:))
% % xx(pos(ii,jj):pos(ii,jj)+lseq(ii)) = 1;
% % end
%
% end
nn = nseq*1000; % make smaller
if stretch > 0
stretches = randi(stretch,nn,1);
else
stretches = zeros(nn,1);
end
%temp = cumsum(randi(450,nn,1)+max(lseq)+stretch); = 1:nn
temp = [];
for j = 1:nn
% need to fix this to work for stretches = 0
%temp = [temp;randi(100,1,1)+max(lseq)+stretches(ii)];
temp = [temp;randi(100,1,1)+(max(lseq)/max(Dt)*(max(Dt)+stretches(ii)))];
end
temp = cumsum(temp);
%indx = randi(nseq,nn,1);
indx = ones(nn/nseq,1)';
for ii = 2:nseq
indx = [indx,ii*ones(nn/nseq,1)'];
%indx = [ones(nn/2,1);2*ones(nn/2,1)]';
end
indx = indx(randperm(nn));
for ii = 1:nseq
H(ii,temp((indx == ii))) = 1;
Hs{ii} = stretches((indx == ii));
end
if shared
H(end,:) = sum(H(1:end-1,:));
end
H = H(:,1:T);
%% Make Data using noise parameters in the reconstruction
W = zeros(N,nseq,max(lseq)+150);
[N,K,L] = size(W);
if shared && diff
index(1,:) = 1:Nneurons(1);
for ii = 2:K-1
index(ii,:) = randperm(Nneurons(1));
end
end
%leng = max(Dt)+ max(lseq) + (stretch)*max(lseq);
leng = (max(lseq)/max(Dt)*(max(Dt)+stretch));
L = leng+150;
H(:,T-(2*(max(lseq)/max(Dt)*(max(Dt)+(stretch)))):T) = 0;
%H(:,end-300:end) = 0;
[~,T] = size(H);
V_hat = zeros(N,T);%+L-1);
%Dont forget these things!
%NeuronNoise = [0.1,0.05,0.2,0.13]; % the noise in a neurons firing rate
%SeqNoiseTime = [0.1,0.2,0.1,0.1]; % the noise in the sequence aka jitter (p of each neuron jittered 1 dt)
%SeqNoiseNeuron = [0.9,0.9,0.9,0.9]; % the probability that a neuron participates in a given seq
if shared
Ktemp = K-1;
else
Ktemp = K;
end
for ii = 1:Ktemp % go through each factor
ind = find(H(ii,:));
for jj = 1:sum(H(ii,:)) % go through each iteration of the sequence
tempH = zeros(1,size(H,2));
tempH(ind(jj)) = 1;
if stretch > 0 % change the dt for each instance
Dt_temp = Dt(ii)+Hs{ii}(jj);%+(randi(stretch))
%*(-1+(2*(rand(1)>0.5))); If you want compression as well
tempW = zeros(N,leng+150);
temp = eye(length(neurons{ii}));
%rng(ii)
%temp = rand(size(temp))>0.7;
if size(temp,2) < leng
temp2 = zeros(length(neurons{ii}),Dt_temp*Nneurons(ii));
temp2(:,1:Dt_temp:Dt_temp*Nneurons(ii)) = temp;
tempW(neurons{ii},50:49+size(temp2,2)) = temp2;
else
tempW(neurons{ii},50:lseq(ii)+49) = temp;
end
else
Dt_temp = Dt(ii);
tempW = zeros(N,leng+150);
temp = eye(length(neurons{ii}));
%rng(ii)
%temp = rand(size(temp))>0.7;
if size(temp,2) < leng
temp2 = zeros(length(neurons{ii}),Dt_temp*Nneurons(ii));
temp2(:,1:Dt_temp:Dt_temp*Nneurons(ii)) = temp;
tempW(neurons{ii},50:49+size(temp2,2)) = temp2;
if shared
temp = eye(length(neurons{end}));
if diff
temp = temp(index(ii,:),:);
end
temp2 = zeros(length(neurons{ii}),Dt_temp*Nneurons(ii));
temp2(:,1:Dt_temp:Dt_temp*Nneurons(ii)) = temp;
tempW(neurons{end},50:49+size(temp2,2)) = temp2;
end
else
tempW(neurons{ii},50:lseq(ii)+49) = temp;
end
end
% neurons are jittered with some lambda
%shifts = poissrnd(SeqNoiseTime(ii),N,1).*(1-2*(rand(N,1)>0.5));
shifts = round(normrnd(0,SeqNoiseTime(ii),N,1));
%shifts(abs(shifts) >5) = 0; %stop poiss from getting to big
for idx = 1:size(W,1)
tempW(idx,:) = circshift(tempW(idx,:),shifts(idx)*1);
end
% neurons participate with some p
tempW(rand(N,1)>SeqNoiseNeuron(ii),:) = 0;
[tempW, tempH] = helper.shiftFactors(tempW, tempH);
shift = circshift(1:length(tempH),floor((Dt(ii)*Nneurons(ii))- Dt_temp*Nneurons(ii))/2);
tempH = tempH(:,shift);
newData = conv2(tempH,tempW);
%V_hat = V_hat + newData(:,ceil(size(tempW,2)/2):end - floor(size(tempW,2)/2));
V_hat = V_hat + newData(:,1:(end - size(tempW,2)+1));
end
end
%% could add indepent noise later
V_hat = V_hat + (rand(size(V_hat))<NeuronNoise);
%V_hat = V_hat./V_hat;
V_hat(isnan(V_hat)) = 0;
%%
%data = V_hat;
if ~bin
filtbio = [zeros(1,10*10) exp(-(1:10*10)/10)];
data = conv2(V_hat,filtbio,'same');
else
data = V_hat;
end
W = [];
for ii = 1:K % go through each factor
Dt_temp = Dt(ii);
tempW = zeros(N,leng+150);
temp = eye(length(neurons{ii}));
temp2 = zeros(length(neurons{ii}),Dt_temp*Nneurons(ii));
temp2(:,1:Dt_temp:Dt_temp*Nneurons(ii)) = temp;
tempW(neurons{ii},50:49+size(temp2,2)) = temp2;
W(:,ii,:) = tempW;
end
[W, H] = helper.shiftFactors(W, H);
if ~bin
for ii = 1:size(W,2)
W(:,ii,:) = conv2(squeeze(W(:,ii,:)),filtbio,'same');
end
end
rng shuffle
end