forked from espnet/espnet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
st_inference_streaming.py
799 lines (717 loc) · 27.7 KB
/
st_inference_streaming.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
#!/usr/bin/env python3
import argparse
import logging
import math
import sys
from pathlib import Path
from typing import List, Optional, Sequence, Tuple, Union
import numpy as np
import torch
from typeguard import typechecked
from espnet2.asr.encoder.contextual_block_conformer_encoder import ( # noqa: H301
ContextualBlockConformerEncoder,
)
from espnet2.asr.encoder.contextual_block_transformer_encoder import ( # noqa: H301
ContextualBlockTransformerEncoder,
)
from espnet2.asr.frontend.s3prl import S3prlFrontend
from espnet2.fileio.datadir_writer import DatadirWriter
from espnet2.tasks.lm import LMTask
from espnet2.tasks.st import STTask
from espnet2.text.build_tokenizer import build_tokenizer
from espnet2.text.token_id_converter import TokenIDConverter
from espnet2.torch_utils.device_funcs import to_device
from espnet2.torch_utils.set_all_random_seed import set_all_random_seed
from espnet2.utils import config_argparse
from espnet2.utils.types import str2bool, str2triple_str, str_or_none
from espnet.nets.batch_beam_search_online import BatchBeamSearchOnline
from espnet.nets.beam_search import Hypothesis
from espnet.nets.pytorch_backend.transformer.subsampling import TooShortUttError
from espnet.nets.scorer_interface import BatchScorerInterface
from espnet.nets.scorers.ctc import CTCPrefixScorer
from espnet.nets.scorers.length_bonus import LengthBonus
from espnet.utils.cli_utils import get_commandline_args
try:
from transformers import AutoModelForSeq2SeqLM
is_transformers_available = True
except ImportError:
is_transformers_available = False
class Speech2TextStreaming:
"""Speech2TextStreaming class
Details in "Streaming Transformer ASR with Blockwise Synchronous Beam Search"
(https://arxiv.org/abs/2006.14941)
Examples:
>>> import soundfile
>>> speech2text = Speech2TextStreaming("asr_config.yml", "asr.pth")
>>> audio, rate = soundfile.read("speech.wav")
>>> speech2text(audio)
[(text, token, token_int, hypothesis object), ...]
"""
@typechecked
def __init__(
self,
st_train_config: Union[Path, str],
st_model_file: Union[Path, str, None] = None,
lm_train_config: Union[Path, str, None] = None,
lm_file: Union[Path, str, None] = None,
token_type: Optional[str] = None,
bpemodel: Optional[str] = None,
device: str = "cpu",
maxlenratio: float = 0.0,
minlenratio: float = 0.0,
batch_size: int = 1,
dtype: str = "float32",
beam_size: int = 20,
ctc_weight: float = 0.0,
lm_weight: float = 1.0,
penalty: float = 0.0,
nbest: int = 1,
normalize_length: bool = False,
disable_repetition_detection=False,
decoder_text_length_limit=0,
encoded_feat_length_limit=0,
time_sync: bool = False,
incremental_decode: bool = False,
blank_penalty: float = 1.0,
hold_n: int = 0,
transducer_conf: Optional[dict] = None,
hugging_face_decoder: bool = False,
):
# 1. Build ST model
scorers = {}
st_model, st_train_args = STTask.build_model_from_file(
st_train_config, st_model_file, device
)
st_model.to(dtype=getattr(torch, dtype)).eval()
if isinstance(
st_model.encoder, ContextualBlockTransformerEncoder
) or isinstance(st_model.encoder, ContextualBlockConformerEncoder):
if isinstance(st_model.frontend, S3prlFrontend):
raise NotImplementedError(
"S3prlFrontend not supported with blockwise encoder"
)
if st_model.hier_encoder is not None:
raise NotImplementedError(
"hierarchical encoder not supported with blockwise encoder"
)
block_size = st_train_args.encoder_conf["block_size"]
else:
block_size = 0 # recompute encoder with every new chunk
decoder = st_model.decoder
if hasattr(st_model, "st_ctc"):
ctc = CTCPrefixScorer(ctc=st_model.st_ctc, eos=st_model.eos)
else:
ctc = None
token_list = st_model.token_list
scorers.update(
decoder=decoder,
ctc=ctc,
length_bonus=LengthBonus(len(token_list)),
)
# 2. Build Language model
if lm_train_config is not None:
lm, lm_train_args = LMTask.build_model_from_file(
lm_train_config, lm_file, device
)
scorers["lm"] = lm.lm
# 3. Build BeamSearch object
weights = dict(
decoder=1.0 - ctc_weight,
ctc=ctc_weight,
lm=lm_weight,
length_bonus=penalty,
blank_penalty=blank_penalty,
)
# assert "encoder_conf" in st_train_args
# assert "look_ahead" in st_train_args.encoder_conf
# assert "hop_size" in st_train_args.encoder_conf
# assert "block_size" in st_train_args.encoder_conf
assert batch_size == 1
if (
decoder.__class__.__name__ == "HuggingFaceTransformersDecoder"
and hugging_face_decoder
):
if not is_transformers_available:
raise ImportError(
"`transformers` is not available."
" Please install it via `pip install transformers`"
" or `cd /path/to/espnet/tools && . ./activate_python.sh"
" && ./installers/install_transformers.sh`."
)
hugging_face_model = AutoModelForSeq2SeqLM.from_pretrained(
decoder.model_name_or_path
)
hugging_face_model.lm_head.load_state_dict(decoder.lm_head.state_dict())
if hasattr(hugging_face_model, "model"):
hugging_face_model.model.decoder.load_state_dict(
decoder.decoder.state_dict()
)
del hugging_face_model.model.encoder
else:
hugging_face_model.decoder.load_state_dict(decoder.decoder.state_dict())
del hugging_face_model.encoder
# del st_model.decoder.lm_head
# del st_model.decoder.decoder
hugging_face_linear_in = decoder.linear_in
hugging_face_model.to(device=device).eval()
# hacky way to use .score()
st_model.decoder.hf_generate = hugging_face_model
weights = dict(
decoder=1.0 - ctc_weight,
ctc=ctc_weight,
lm=lm_weight,
length_bonus=penalty,
)
beam_search = BatchBeamSearchOnline(
beam_size=beam_size,
weights=weights,
scorers=scorers,
sos=hugging_face_model.config.decoder_start_token_id,
eos=hugging_face_model.config.eos_token_id,
vocab_size=len(token_list),
token_list=token_list,
pre_beam_score_key="full",
normalize_length=normalize_length,
disable_repetition_detection=disable_repetition_detection,
decoder_text_length_limit=decoder_text_length_limit,
encoded_feat_length_limit=encoded_feat_length_limit,
incremental_decode=incremental_decode,
time_sync=time_sync,
block_size=block_size,
ctc=st_model.st_ctc if hasattr(st_model, "st_ctc") else None,
hold_n=hold_n,
)
self.hugging_face_model = hugging_face_model
self.hugging_face_linear_in = hugging_face_linear_in
else:
beam_search = BatchBeamSearchOnline(
beam_size=beam_size,
weights=weights,
scorers=scorers,
sos=st_model.sos,
eos=st_model.eos,
vocab_size=len(token_list),
token_list=token_list,
pre_beam_score_key="full",
disable_repetition_detection=disable_repetition_detection,
decoder_text_length_limit=decoder_text_length_limit,
encoded_feat_length_limit=encoded_feat_length_limit,
incremental_decode=incremental_decode,
time_sync=time_sync,
ctc=st_model.st_ctc if hasattr(st_model, "st_ctc") else None,
hold_n=hold_n,
transducer_conf=transducer_conf,
joint_network=(
st_model.st_joint_network
if hasattr(st_model, "st_joint_network")
else None
),
)
self.hugging_face_model = None
self.hugging_face_linear_in = None
if transducer_conf is None:
non_batch = [
k
for k, v in beam_search.full_scorers.items()
if not isinstance(v, BatchScorerInterface)
]
assert len(non_batch) == 0
# TODO(karita): make all scorers batchfied
logging.info("BatchBeamSearchOnline implementation is selected.")
beam_search.to(device=device, dtype=getattr(torch, dtype)).eval()
for scorer in scorers.values():
if isinstance(scorer, torch.nn.Module):
scorer.to(device=device, dtype=getattr(torch, dtype)).eval()
logging.info(f"Beam_search: {beam_search}")
logging.info(f"Decoding device={device}, dtype={dtype}")
# 4. [Optional] Build Text converter: e.g. bpe-sym -> Text
if token_type is None:
token_type = st_train_args.token_type
if bpemodel is None:
bpemodel = st_train_args.bpemodel
if token_type is None:
tokenizer = None
elif token_type == "bpe" or token_type == "hugging_face":
if bpemodel is not None:
tokenizer = build_tokenizer(token_type=token_type, bpemodel=bpemodel)
else:
tokenizer = None
else:
tokenizer = build_tokenizer(token_type=token_type)
converter = TokenIDConverter(token_list=token_list)
logging.info(f"Text tokenizer: {tokenizer}")
self.st_model = st_model
self.st_train_args = st_train_args
self.converter = converter
self.tokenizer = tokenizer
self.beam_search = beam_search
self.maxlenratio = maxlenratio
self.minlenratio = minlenratio
self.device = device
self.dtype = dtype
self.nbest = nbest
if "n_fft" in st_train_args.frontend_conf:
self.n_fft = st_train_args.frontend_conf["n_fft"]
else:
self.n_fft = 512
if "hop_length" in st_train_args.frontend_conf:
self.hop_length = st_train_args.frontend_conf["hop_length"]
else:
self.hop_length = 128
if (
"win_length" in st_train_args.frontend_conf
and st_train_args.frontend_conf["win_length"] is not None
):
self.win_length = st_train_args.frontend_conf["win_length"]
else:
self.win_length = self.n_fft
self.reset()
def reset(self):
self.frontend_states = None
self.encoder_states = None
self.hier_encoder_states = None
self.beam_search.reset()
def apply_frontend(
self, speech: torch.Tensor, prev_states=None, is_final: bool = False
):
if prev_states is not None:
buf = prev_states["waveform_buffer"]
speech = torch.cat([buf, speech], dim=0)
if is_final:
speech_to_process = speech
waveform_buffer = None
else:
n_frames = (
speech.size(0) - (self.win_length - self.hop_length)
) // self.hop_length
n_residual = (
speech.size(0) - (self.win_length - self.hop_length)
) % self.hop_length
speech_to_process = speech.narrow(
0, 0, (self.win_length - self.hop_length) + n_frames * self.hop_length
)
waveform_buffer = speech.narrow(
0,
speech.size(0) - (self.win_length - self.hop_length) - n_residual,
(self.win_length - self.hop_length) + n_residual,
).clone()
# data: (Nsamples,) -> (1, Nsamples)
speech_to_process = speech_to_process.unsqueeze(0).to(
getattr(torch, self.dtype)
)
lengths = speech_to_process.new_full(
[1], dtype=torch.long, fill_value=speech_to_process.size(1)
)
batch = {"speech": speech_to_process, "speech_lengths": lengths}
# lenghts: (1,)
# a. To device
batch = to_device(batch, device=self.device)
feats, feats_lengths = self.st_model._extract_feats(**batch)
if self.st_model.normalize is not None:
feats, feats_lengths = self.st_model.normalize(feats, feats_lengths)
# Trimming
if is_final:
if prev_states is None:
pass
else:
feats = feats.narrow(
1,
math.ceil(math.ceil(self.win_length / self.hop_length) / 2),
feats.size(1)
- math.ceil(math.ceil(self.win_length / self.hop_length) / 2),
)
else:
if prev_states is None:
feats = feats.narrow(
1,
0,
feats.size(1)
- math.ceil(math.ceil(self.win_length / self.hop_length) / 2),
)
else:
feats = feats.narrow(
1,
math.ceil(math.ceil(self.win_length / self.hop_length) / 2),
feats.size(1)
- 2 * math.ceil(math.ceil(self.win_length / self.hop_length) / 2),
)
feats_lengths = feats.new_full([1], dtype=torch.long, fill_value=feats.size(1))
if is_final:
next_states = None
else:
next_states = {"waveform_buffer": waveform_buffer}
return feats, feats_lengths, next_states
@torch.no_grad()
@typechecked
def __call__(
self, speech: Union[torch.Tensor, np.ndarray], is_final: bool = True
) -> List[Tuple[Optional[str], List[str], List[int], Hypothesis]]:
"""Inference
Args:
data: Input speech data
Returns:
text, token, token_int, hyp
"""
# Input as audio signal
if isinstance(speech, np.ndarray):
speech = torch.tensor(speech)
if isinstance(
self.st_model.encoder, ContextualBlockTransformerEncoder
) or isinstance(self.st_model.encoder, ContextualBlockConformerEncoder):
feats, feats_lengths, self.frontend_states = self.apply_frontend(
speech, self.frontend_states, is_final=is_final
)
enc, _, self.encoder_states = self.st_model.encoder(
feats,
feats_lengths,
self.encoder_states,
is_final=is_final,
infer_mode=True,
)
else:
speech = speech.unsqueeze(0).to(getattr(torch, self.dtype))
lengths = speech.new_full([1], dtype=torch.long, fill_value=speech.size(1))
batch = {"speech": speech, "speech_lengths": lengths}
batch = to_device(batch, device=self.device)
enc, enc_lengths = self.st_model.encode(**batch)
nbest_hyps = self.beam_search(
x=enc[0],
maxlenratio=self.maxlenratio,
minlenratio=self.minlenratio,
is_final=is_final,
)
ret = self.assemble_hyps(nbest_hyps)
if is_final:
self.reset()
return ret
def assemble_hyps(self, hyps):
nbest_hyps = hyps[: self.nbest]
results = []
for hyp in nbest_hyps:
assert isinstance(hyp, Hypothesis), type(hyp)
# remove sos/eos and get results
token_int = hyp.yseq[1:-1].tolist()
# remove blank symbol id, which is assumed to be 0
token_int = list(filter(lambda x: x != 0, token_int))
# Change integer-ids to tokens
token = self.converter.ids2tokens(token_int)
if self.tokenizer is not None:
text = self.tokenizer.tokens2text(token)
else:
text = None
results.append((text, token, token_int, hyp))
return results
@typechecked
def inference(
output_dir: str,
maxlenratio: float,
minlenratio: float,
batch_size: int,
dtype: str,
beam_size: int,
ngpu: int,
seed: int,
ctc_weight: float,
lm_weight: float,
penalty: float,
nbest: int,
normalize_length: bool,
num_workers: int,
log_level: Union[int, str],
data_path_and_name_and_type: Sequence[Tuple[str, str, str]],
key_file: Optional[str],
st_train_config: str,
st_model_file: str,
lm_train_config: Optional[str],
lm_file: Optional[str],
word_lm_train_config: Optional[str],
word_lm_file: Optional[str],
token_type: Optional[str],
bpemodel: Optional[str],
allow_variable_data_keys: bool,
sim_chunk_length: int,
disable_repetition_detection: bool,
encoded_feat_length_limit: int,
decoder_text_length_limit: int,
time_sync: bool,
incremental_decode: bool,
blank_penalty: float,
hold_n: int,
transducer_conf: Optional[dict],
hugging_face_decoder: bool,
):
if batch_size > 1:
raise NotImplementedError("batch decoding is not implemented")
if word_lm_train_config is not None:
raise NotImplementedError("Word LM is not implemented")
if ngpu > 1:
raise NotImplementedError("only single GPU decoding is supported")
logging.basicConfig(
level=log_level,
format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s",
)
if ngpu >= 1:
device = "cuda"
else:
device = "cpu"
# 1. Set random-seed
set_all_random_seed(seed)
# 2. Build speech2text
speech2text = Speech2TextStreaming(
st_train_config=st_train_config,
st_model_file=st_model_file,
lm_train_config=lm_train_config,
lm_file=lm_file,
token_type=token_type,
bpemodel=bpemodel,
device=device,
maxlenratio=maxlenratio,
minlenratio=minlenratio,
dtype=dtype,
beam_size=beam_size,
ctc_weight=ctc_weight,
lm_weight=lm_weight,
penalty=penalty,
nbest=nbest,
normalize_length=normalize_length,
disable_repetition_detection=disable_repetition_detection,
decoder_text_length_limit=decoder_text_length_limit,
encoded_feat_length_limit=encoded_feat_length_limit,
time_sync=time_sync,
incremental_decode=incremental_decode,
blank_penalty=blank_penalty,
hold_n=hold_n,
transducer_conf=transducer_conf,
hugging_face_decoder=hugging_face_decoder,
)
# 3. Build data-iterator
loader = STTask.build_streaming_iterator(
data_path_and_name_and_type,
dtype=dtype,
batch_size=batch_size,
key_file=key_file,
num_workers=num_workers,
preprocess_fn=STTask.build_preprocess_fn(speech2text.st_train_args, False),
collate_fn=STTask.build_collate_fn(speech2text.st_train_args, False),
allow_variable_data_keys=allow_variable_data_keys,
inference=True,
)
# 7 .Start for-loop
# FIXME(kamo): The output format should be discussed about
with DatadirWriter(output_dir) as writer:
for keys, batch in loader:
assert isinstance(batch, dict), type(batch)
assert all(isinstance(s, str) for s in keys), keys
_bs = len(next(iter(batch.values())))
assert len(keys) == _bs, f"{len(keys)} != {_bs}"
batch = {k: v[0] for k, v in batch.items() if not k.endswith("_lengths")}
assert len(batch.keys()) == 1
try:
if sim_chunk_length == 0:
# N-best list of (text, token, token_int, hyp_object)
results = speech2text(**batch)
else:
speech = batch["speech"]
if (len(speech) // sim_chunk_length) > 1:
# recompute with incrementally longer input
if isinstance(speech2text.st_model.frontend, S3prlFrontend):
for i in range(len(speech) // sim_chunk_length):
speech2text(
speech=speech[: (i + 1) * sim_chunk_length],
is_final=False,
)
results = speech2text(
speech[: len(speech)],
is_final=True,
)
# non recompute
else:
for i in range(len(speech) // sim_chunk_length):
speech2text(
speech=speech[
i
* sim_chunk_length : (i + 1)
* sim_chunk_length
],
is_final=False,
)
results = speech2text(
speech[(i + 1) * sim_chunk_length : len(speech)],
is_final=True,
)
else:
results = speech2text(**batch)
except TooShortUttError as e:
logging.warning(f"Utterance {keys} {e}")
hyp = Hypothesis(score=0.0, scores={}, states={}, yseq=[])
results = [[" ", ["<space>"], [2], hyp]] * nbest
# Only supporting batch_size==1
key = keys[0]
for n, (text, token, token_int, hyp) in zip(range(1, nbest + 1), results):
# Create a directory: outdir/{n}best_recog
ibest_writer = writer[f"{n}best_recog"]
# Write the result to each file
ibest_writer["token"][key] = " ".join(token)
ibest_writer["token_int"][key] = " ".join(map(str, token_int))
ibest_writer["score"][key] = str(hyp.score)
if text is not None:
ibest_writer["text"][key] = text
def get_parser():
parser = config_argparse.ArgumentParser(
description="ST Decoding",
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
)
# Note(kamo): Use '_' instead of '-' as separator.
# '-' is confusing if written in yaml.
parser.add_argument(
"--log_level",
type=lambda x: x.upper(),
default="INFO",
choices=("CRITICAL", "ERROR", "WARNING", "INFO", "DEBUG", "NOTSET"),
help="The verbose level of logging",
)
parser.add_argument("--output_dir", type=str, required=True)
parser.add_argument(
"--ngpu",
type=int,
default=0,
help="The number of gpus. 0 indicates CPU mode",
)
parser.add_argument("--seed", type=int, default=0, help="Random seed")
parser.add_argument(
"--dtype",
default="float32",
choices=["float16", "float32", "float64"],
help="Data type",
)
parser.add_argument(
"--num_workers",
type=int,
default=1,
help="The number of workers used for DataLoader",
)
group = parser.add_argument_group("Input data related")
group.add_argument(
"--data_path_and_name_and_type",
type=str2triple_str,
required=True,
action="append",
)
group.add_argument("--key_file", type=str_or_none)
group.add_argument("--allow_variable_data_keys", type=str2bool, default=False)
group.add_argument(
"--sim_chunk_length",
type=int,
default=0,
help="The length of one chunk, to which speech will be "
"divided for evalution of streaming processing.",
)
group = parser.add_argument_group("The model configuration related")
group.add_argument("--st_train_config", type=str, required=True)
group.add_argument("--st_model_file", type=str, required=True)
group.add_argument("--lm_train_config", type=str)
group.add_argument("--lm_file", type=str)
group.add_argument("--word_lm_train_config", type=str)
group.add_argument("--word_lm_file", type=str)
group = parser.add_argument_group("Beam-search related")
group.add_argument(
"--batch_size",
type=int,
default=1,
help="The batch size for inference",
)
group.add_argument("--nbest", type=int, default=1, help="Output N-best hypotheses")
group.add_argument("--beam_size", type=int, default=20, help="Beam size")
group.add_argument("--penalty", type=float, default=0.0, help="Insertion penalty")
group.add_argument(
"--maxlenratio",
type=float,
default=0.0,
help="Input length ratio to obtain max output length. "
"If maxlenratio=0.0 (default), it uses a end-detect "
"function "
"to automatically find maximum hypothesis lengths",
)
group.add_argument(
"--minlenratio",
type=float,
default=0.0,
help="Input length ratio to obtain min output length",
)
group.add_argument("--ctc_weight", type=float, default=0.0, help="CTC weight")
group.add_argument("--lm_weight", type=float, default=1.0, help="RNNLM weight")
group.add_argument("--disable_repetition_detection", type=str2bool, default=False)
group.add_argument(
"--encoded_feat_length_limit",
type=int,
default=0,
help="Limit the lengths of the encoded feature" "to input to the decoder.",
)
group.add_argument(
"--decoder_text_length_limit",
type=int,
default=0,
help="Limit the lengths of the text" "to input to the decoder.",
)
group = parser.add_argument_group("Text converter related")
group.add_argument(
"--token_type",
type=str_or_none,
default=None,
choices=["char", "bpe", None],
help="The token type for ST model. "
"If not given, refers from the training args",
)
group.add_argument(
"--bpemodel",
type=str_or_none,
default=None,
help="The model path of sentencepiece. "
"If not given, refers from the training args",
)
group.add_argument(
"--time_sync",
type=str2bool,
default=False,
help="Time synchronous beam search.",
)
group.add_argument(
"--incremental_decode",
type=str2bool,
default=False,
help="Time synchronous beam search.",
)
group.add_argument(
"--blank_penalty",
type=float,
default=1.0,
help="Time synchronous beam search.",
)
group.add_argument(
"--hold_n",
type=int,
default=0,
help="Time synchronous beam search.",
)
group.add_argument(
"--transducer_conf",
default=None,
help="The keyword arguments for transducer beam search.",
)
group.add_argument("--hugging_face_decoder", type=str2bool, default=False)
group.add_argument(
"--normalize_length",
type=str2bool,
default=False,
help="If true, best hypothesis is selected by length-normalized scores",
)
return parser
def main(cmd=None):
print(get_commandline_args(), file=sys.stderr)
parser = get_parser()
args = parser.parse_args(cmd)
kwargs = vars(args)
kwargs.pop("config", None)
inference(**kwargs)
if __name__ == "__main__":
main()