-
Notifications
You must be signed in to change notification settings - Fork 61
/
ScheduleFuncs.py
178 lines (154 loc) · 6.34 KB
/
ScheduleFuncs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
#These nodes were made using code from the Deforum extension for A1111 webui
#You can find the project here: https://github.com/deforum-art/sd-webui-deforum
import numexpr
import torch
import torch.nn.functional as F
import numpy as np
import pandas as pd
import re
import json
#functions used by PromptSchedule nodes
#This Settings class is mainly used to reduce clutter and keep things relatively
#organized. It is multi-purpose for both regular clip encoding and SDXL encoding
#The value schedule doesn't have as many arguments so I didn't bother doing the
#same for that.
class ScheduleSettings:
def __init__(
self,
text_g: str,
pre_text_G: str,
app_text_G: str,
text_L: str,
pre_text_L: str,
app_text_L: str,
max_frames: int,
current_frame: int,
print_output: bool,
pw_a: float,
pw_b: float,
pw_c: float,
pw_d: float,
start_frame: int,
end_frame:int,
width: int,
height: int,
crop_w: int,
crop_h: int,
target_width: int,
target_height: int,
):
self.text_g=text_g
self.pre_text_G=pre_text_G
self.app_text_G=app_text_G
self.text_l=text_L
self.pre_text_L=pre_text_L
self.app_text_L=app_text_L
self.max_frames=max_frames
self.current_frame=current_frame
self.print_output=print_output
self.pw_a=pw_a
self.pw_b=pw_b
self.pw_c=pw_c
self.pw_d=pw_d
self.start_frame=start_frame
self.end_frame=end_frame
self.width=width
self.height=height
self.crop_w=crop_w
self.crop_h=crop_h
self.target_width=target_width
self.target_height=target_height
def set_sync_option(self, sync_option: bool):
self.sync_context_to_pe = sync_option
#Addweighted function from Comfyui
def addWeighted(conditioning_to, conditioning_from, conditioning_to_strength, max_size=0):
out = []
if len(conditioning_from) > 1:
print("Warning: ConditioningAverage conditioning_from contains more than 1 cond, only the first one will actually be applied to conditioning_to.")
cond_from = conditioning_from[0][0]
pooled_output_from = conditioning_from[0][1].get("pooled_output", None)
for i in range(len(conditioning_to)):
t1 = conditioning_to[i][0]
pooled_output_to = conditioning_to[i][1].get("pooled_output", pooled_output_from)
if max_size == 0:
max_size = max(t1.shape[1], cond_from.shape[1])
t0, max_size = pad_with_zeros(cond_from, max_size)
t1, max_size = pad_with_zeros(t1, t0.shape[1]) # Padding t1 to match max_size
t0, max_size = pad_with_zeros(t0, t1.shape[1])
tw = torch.mul(t1, conditioning_to_strength) + torch.mul(t0, (1.0 - conditioning_to_strength))
t_to = conditioning_to[i][1].copy()
t_to["pooled_output"] = pooled_output_from
n = [tw, t_to]
out.append(n)
return out
def pad_with_zeros(tensor, target_length):
current_length = tensor.shape[1]
if current_length < target_length:
# Calculate the required padding length
pad_length = target_length - current_length
# Calculate padding on both sides to maintain the tensor's original shape
left_pad = pad_length // 2
right_pad = pad_length - left_pad
# Pad the tensor along the second dimension
tensor = F.pad(tensor, (0, 0, left_pad, right_pad))
return tensor, target_length
def process_input_text(text: str) -> dict:
input_text = text.replace('\n', '')
input_text = "{" + input_text + "}"
input_text = re.sub(r',\s*}', '}', input_text)
animation_prompts = json.loads(input_text.strip())
return animation_prompts
def check_is_number(value):
float_pattern = r'^(?=.)([+-]?([0-9]*)(\.([0-9]+))?)$'
return re.match(float_pattern, value)
def parse_weight(match, frame=0, max_frames=0) -> float: #calculate weight steps for in-betweens
w_raw = match.group("weight")
max_f = max_frames # this line has to be left intact as it's in use by numexpr even though it looks like it doesn't
if w_raw is None:
return 1
if check_is_number(w_raw):
return float(w_raw)
else:
t = frame
if len(w_raw) < 3:
print('the value inside `-characters cannot represent a math function')
return 1
return float(numexpr.evaluate(w_raw[1:-1]))
def PoolAnimConditioning(cur_prompt, nxt_prompt, weight, clip):
if str(cur_prompt) == str(nxt_prompt):
tokens = clip.tokenize(str(cur_prompt))
cond, pooled = clip.encode_from_tokens(tokens, return_pooled=True)
return [[cond, {"pooled_output": pooled}]]
if weight == 1:
tokens = clip.tokenize(str(cur_prompt))
cond, pooled = clip.encode_from_tokens(tokens, return_pooled=True)
return [[cond, {"pooled_output": pooled}]]
if weight == 0:
tokens = clip.tokenize(str(nxt_prompt))
cond, pooled = clip.encode_from_tokens(tokens, return_pooled=True)
return [[cond, {"pooled_output": pooled}]]
else:
tokens = clip.tokenize(str(nxt_prompt))
cond_from, pooled_from = clip.encode_from_tokens(tokens, return_pooled=True)
tokens = clip.tokenize(str(cur_prompt))
cond_to, pooled_to = clip.encode_from_tokens(tokens, return_pooled=True)
return addWeighted([[cond_to, {"pooled_output": pooled_to}]], [[cond_from, {"pooled_output": pooled_from}]], weight)
def SDXLencode(g, l, settings:ScheduleSettings, clip):
tokens = clip.tokenize(g)
tokens["l"] = clip.tokenize(l)["l"]
if len(tokens["l"]) != len(tokens["g"]):
empty = clip.tokenize("")
while len(tokens["l"]) < len(tokens["g"]):
tokens["l"] += empty["l"]
while len(tokens["l"]) > len(tokens["g"]):
tokens["g"] += empty["g"]
cond, pooled = clip.encode_from_tokens(tokens, return_pooled=True)
return [[cond, {
"pooled_output": pooled,
"width": settings.width,
"height": settings.height,
"crop_w": settings.crop_w,
"crop_h": settings.crop_h,
"target_width": settings.target_width,
"target_height": settings.target_height
}]]