From 7554d5be7811c5c2649ce852ce8b1a83b880cc8a Mon Sep 17 00:00:00 2001 From: Arjun Suresh Date: Thu, 10 Oct 2024 08:40:44 +0530 Subject: [PATCH] Results from self hosted Github actions - NVIDIARTX4090 --- .../README.md | 3 + .../stable-diffusion-xl/offline/README.md | 94 +++ .../README.md | 3 + .../stable-diffusion-xl/offline/README.md | 96 +++ .../README.md | 3 + .../stable-diffusion-xl/offline/README.md | 102 ++++ .../offline/accuracy_console.out | 0 .../offline/cm-version-info.json | 574 ++++++++++++++++++ .../stable-diffusion-xl/offline/cpu_info.json | 27 + ...on-reference-gpu-pytorch_v2.4.1-cu124.json | 7 + .../stable-diffusion-xl/offline/mlperf.conf | 98 +++ .../stable-diffusion-xl/offline/os_info.json | 30 + .../offline/performance_console.out | 0 .../offline/pip_freeze.json | 73 +++ .../stable-diffusion-xl/offline/user.conf | 5 + .../offline/accuracy/accuracy.txt | 2 + .../offline/accuracy/images/captions.txt | 10 + .../offline/accuracy/mlperf_log_accuracy.json | 7 + .../offline/accuracy/mlperf_log_detail.txt | 70 +++ .../offline/accuracy/mlperf_log_summary.txt | 4 + .../run_1/mlperf_log_accuracy.json | 2 + .../performance/run_1/mlperf_log_detail.txt | 87 +++ .../performance/run_1/mlperf_log_summary.txt | 51 ++ ...on-reference-gpu-pytorch_v2.4.1-cu124.json | 37 ++ 24 files changed, 1385 insertions(+) create mode 100644 open/MLCommons/measurements/41485dfb4f36-reference-gpu-pytorch_v2.4.1-scc24-base_cu124/README.md create mode 100644 open/MLCommons/measurements/41485dfb4f36-reference-gpu-pytorch_v2.4.1-scc24-base_cu124/stable-diffusion-xl/offline/README.md create mode 100644 open/MLCommons/measurements/97c3ec750d0e-nvidia-gpu-TensorRT-scc24-base/README.md create mode 100644 open/MLCommons/measurements/97c3ec750d0e-nvidia-gpu-TensorRT-scc24-base/stable-diffusion-xl/offline/README.md create mode 100644 open/MLCommons/measurements/gh_action-reference-gpu-pytorch_v2.4.1-cu124/README.md create mode 100644 open/MLCommons/measurements/gh_action-reference-gpu-pytorch_v2.4.1-cu124/stable-diffusion-xl/offline/README.md create mode 100644 open/MLCommons/measurements/gh_action-reference-gpu-pytorch_v2.4.1-cu124/stable-diffusion-xl/offline/accuracy_console.out create mode 100644 open/MLCommons/measurements/gh_action-reference-gpu-pytorch_v2.4.1-cu124/stable-diffusion-xl/offline/cm-version-info.json create mode 100644 open/MLCommons/measurements/gh_action-reference-gpu-pytorch_v2.4.1-cu124/stable-diffusion-xl/offline/cpu_info.json create mode 100644 open/MLCommons/measurements/gh_action-reference-gpu-pytorch_v2.4.1-cu124/stable-diffusion-xl/offline/gh_action-reference-gpu-pytorch_v2.4.1-cu124.json create mode 100644 open/MLCommons/measurements/gh_action-reference-gpu-pytorch_v2.4.1-cu124/stable-diffusion-xl/offline/mlperf.conf create mode 100644 open/MLCommons/measurements/gh_action-reference-gpu-pytorch_v2.4.1-cu124/stable-diffusion-xl/offline/os_info.json create mode 100644 open/MLCommons/measurements/gh_action-reference-gpu-pytorch_v2.4.1-cu124/stable-diffusion-xl/offline/performance_console.out create mode 100644 open/MLCommons/measurements/gh_action-reference-gpu-pytorch_v2.4.1-cu124/stable-diffusion-xl/offline/pip_freeze.json create mode 100644 open/MLCommons/measurements/gh_action-reference-gpu-pytorch_v2.4.1-cu124/stable-diffusion-xl/offline/user.conf create mode 100644 open/MLCommons/results/gh_action-reference-gpu-pytorch_v2.4.1-cu124/stable-diffusion-xl/offline/accuracy/accuracy.txt create mode 100644 open/MLCommons/results/gh_action-reference-gpu-pytorch_v2.4.1-cu124/stable-diffusion-xl/offline/accuracy/images/captions.txt create mode 100644 open/MLCommons/results/gh_action-reference-gpu-pytorch_v2.4.1-cu124/stable-diffusion-xl/offline/accuracy/mlperf_log_accuracy.json create mode 100644 open/MLCommons/results/gh_action-reference-gpu-pytorch_v2.4.1-cu124/stable-diffusion-xl/offline/accuracy/mlperf_log_detail.txt create mode 100644 open/MLCommons/results/gh_action-reference-gpu-pytorch_v2.4.1-cu124/stable-diffusion-xl/offline/accuracy/mlperf_log_summary.txt create mode 100644 open/MLCommons/results/gh_action-reference-gpu-pytorch_v2.4.1-cu124/stable-diffusion-xl/offline/performance/run_1/mlperf_log_accuracy.json create mode 100644 open/MLCommons/results/gh_action-reference-gpu-pytorch_v2.4.1-cu124/stable-diffusion-xl/offline/performance/run_1/mlperf_log_detail.txt create mode 100644 open/MLCommons/results/gh_action-reference-gpu-pytorch_v2.4.1-cu124/stable-diffusion-xl/offline/performance/run_1/mlperf_log_summary.txt create mode 100644 open/MLCommons/systems/gh_action-reference-gpu-pytorch_v2.4.1-cu124.json diff --git a/open/MLCommons/measurements/41485dfb4f36-reference-gpu-pytorch_v2.4.1-scc24-base_cu124/README.md b/open/MLCommons/measurements/41485dfb4f36-reference-gpu-pytorch_v2.4.1-scc24-base_cu124/README.md new file mode 100644 index 0000000..d56d6b9 --- /dev/null +++ b/open/MLCommons/measurements/41485dfb4f36-reference-gpu-pytorch_v2.4.1-scc24-base_cu124/README.md @@ -0,0 +1,3 @@ +| Model | Scenario | Accuracy | Throughput | Latency (in ms) | +|---------------------|------------|-----------------------|--------------|-------------------| +| stable-diffusion-xl | offline | (15.18544, 235.69504) | 0.374 | - | \ No newline at end of file diff --git a/open/MLCommons/measurements/41485dfb4f36-reference-gpu-pytorch_v2.4.1-scc24-base_cu124/stable-diffusion-xl/offline/README.md b/open/MLCommons/measurements/41485dfb4f36-reference-gpu-pytorch_v2.4.1-scc24-base_cu124/stable-diffusion-xl/offline/README.md new file mode 100644 index 0000000..8bc104a --- /dev/null +++ b/open/MLCommons/measurements/41485dfb4f36-reference-gpu-pytorch_v2.4.1-scc24-base_cu124/stable-diffusion-xl/offline/README.md @@ -0,0 +1,94 @@ +This experiment is generated using the [MLCommons Collective Mind automation framework (CM)](https://github.com/mlcommons/cm4mlops). + +*Check [CM MLPerf docs](https://docs.mlcommons.org/inference) for more details.* + +## Host platform + +* OS version: Linux-6.2.0-39-generic-x86_64-with-glibc2.35 +* CPU version: x86_64 +* Python version: 3.10.12 (main, Sep 11 2024, 15:47:36) [GCC 11.4.0] +* MLCommons CM version: 3.0.1 + +## CM Run Command + +See [CM installation guide](https://docs.mlcommons.org/inference/install/). + +```bash +pip install -U cmind + +cm rm cache -f + +cm pull repo gateoverflow@cm4mlops --checkout=50431589d01cd60060a0d1be3c1f8193d99c6144 + +cm run script \ + --tags=app,mlperf,inference,generic,_reference,_sdxl,_pytorch,_cuda,_test,_r4.1-dev_default,_float16,_offline \ + --quiet=true \ + --env.CM_MLPERF_MODEL_SDXL_DOWNLOAD_TO_HOST=yes \ + --env.CM_QUIET=yes \ + --env.CM_MLPERF_IMPLEMENTATION=reference \ + --env.CM_MLPERF_MODEL=sdxl \ + --env.CM_MLPERF_RUN_STYLE=test \ + --env.CM_MLPERF_BACKEND=pytorch \ + --env.CM_MLPERF_SUBMISSION_SYSTEM_TYPE=datacenter \ + --env.CM_MLPERF_CLEAN_ALL=True \ + --env.CM_MLPERF_DEVICE=cuda \ + --env.CM_MLPERF_USE_DOCKER=True \ + --env.CM_MLPERF_MODEL_PRECISION=float16 \ + --env.OUTPUT_BASE_DIR=/home/arjun/scc_gh_action_results \ + --env.CM_MLPERF_LOADGEN_SCENARIO=Offline \ + --env.CM_MLPERF_INFERENCE_SUBMISSION_DIR=/home/arjun/scc_gh_action_submissions \ + --env.CM_MLPERF_INFERENCE_VERSION=4.1-dev \ + --env.CM_RUN_MLPERF_INFERENCE_APP_DEFAULTS=r4.1-dev_default \ + --env.CM_MLPERF_SUBMISSION_GENERATION_STYLE=short \ + --env.CM_MLPERF_SUT_NAME_RUN_CONFIG_SUFFIX4=scc24-base \ + --env.CM_DOCKER_IMAGE_NAME=scc24-reference \ + --env.CM_MLPERF_LOADGEN_ALL_MODES=yes \ + --env.CM_MLPERF_LAST_RELEASE=v4.0 \ + --env.CM_TMP_CURRENT_PATH=/home/arjun/actions-runner/_work/cm4mlops/cm4mlops \ + --env.CM_TMP_PIP_VERSION_STRING= \ + --env.CM_MODEL=sdxl \ + --env.CM_MLPERF_LOADGEN_COMPLIANCE=no \ + --env.CM_MLPERF_CLEAN_SUBMISSION_DIR=yes \ + --env.CM_RERUN=yes \ + --env.CM_MLPERF_LOADGEN_EXTRA_OPTIONS= \ + --env.CM_MLPERF_LOADGEN_MODE=performance \ + --env.CM_MLPERF_LOADGEN_SCENARIOS,=Offline \ + --env.CM_MLPERF_LOADGEN_MODES,=performance,accuracy \ + --env.CM_OUTPUT_FOLDER_NAME=test_results \ + --add_deps_recursive.get-mlperf-inference-results-dir.tags=_version.r4_1-dev \ + --add_deps_recursive.get-mlperf-inference-submission-dir.tags=_version.r4_1-dev \ + --add_deps_recursive.mlperf-inference-nvidia-scratch-space.tags=_version.r4_1-dev \ + --add_deps_recursive.submission-checker.tags=_short-run \ + --add_deps_recursive.coco2014-preprocessed.tags=_size.50,_with-sample-ids \ + --add_deps_recursive.coco2014-dataset.tags=_size.50,_with-sample-ids \ + --add_deps_recursive.nvidia-preprocess-data.extra_cache_tags=scc24-base \ + --v=False \ + --print_env=False \ + --print_deps=False \ + --dump_version_info=True \ + --env.OUTPUT_BASE_DIR=/home/arjun/scc_gh_action_results \ + --env.CM_MLPERF_INFERENCE_SUBMISSION_DIR=/home/arjun/scc_gh_action_submissions \ + --env.SDXL_CHECKPOINT_PATH=/home/cmuser/CM/repos/local/cache/6be1f30ecbde4c4e/stable_diffusion_fp16 +``` +*Note that if you want to use the [latest automation recipes](https://docs.mlcommons.org/inference) for MLPerf (CM scripts), + you should simply reload gateoverflow@cm4mlops without checkout and clean CM cache as follows:* + +```bash +cm rm repo gateoverflow@cm4mlops +cm pull repo gateoverflow@cm4mlops +cm rm cache -f + +``` + +## Results + +Platform: 41485dfb4f36-reference-gpu-pytorch_v2.4.1-scc24-base_cu124 + +Model Precision: fp32 + +### Accuracy Results +`CLIP_SCORE`: `15.18544`, Required accuracy for closed division `>= 31.68632` and `<= 31.81332` +`FID_SCORE`: `235.69504`, Required accuracy for closed division `>= 23.01086` and `<= 23.95008` + +### Performance Results +`Samples per second`: `0.373501` diff --git a/open/MLCommons/measurements/97c3ec750d0e-nvidia-gpu-TensorRT-scc24-base/README.md b/open/MLCommons/measurements/97c3ec750d0e-nvidia-gpu-TensorRT-scc24-base/README.md new file mode 100644 index 0000000..42489ff --- /dev/null +++ b/open/MLCommons/measurements/97c3ec750d0e-nvidia-gpu-TensorRT-scc24-base/README.md @@ -0,0 +1,3 @@ +| Model | Scenario | Accuracy | Throughput | Latency (in ms) | +|---------------------|------------|-----------------------|--------------|-------------------| +| stable-diffusion-xl | offline | (15.47816, 232.17873) | 1.134 | - | \ No newline at end of file diff --git a/open/MLCommons/measurements/97c3ec750d0e-nvidia-gpu-TensorRT-scc24-base/stable-diffusion-xl/offline/README.md b/open/MLCommons/measurements/97c3ec750d0e-nvidia-gpu-TensorRT-scc24-base/stable-diffusion-xl/offline/README.md new file mode 100644 index 0000000..3533bb4 --- /dev/null +++ b/open/MLCommons/measurements/97c3ec750d0e-nvidia-gpu-TensorRT-scc24-base/stable-diffusion-xl/offline/README.md @@ -0,0 +1,96 @@ +This experiment is generated using the [MLCommons Collective Mind automation framework (CM)](https://github.com/mlcommons/cm4mlops). + +*Check [CM MLPerf docs](https://docs.mlcommons.org/inference) for more details.* + +## Host platform + +* OS version: Linux-6.2.0-39-generic-x86_64-with-glibc2.29 +* CPU version: x86_64 +* Python version: 3.8.10 (default, Sep 11 2024, 16:02:53) +[GCC 9.4.0] +* MLCommons CM version: 3.0.2 + +## CM Run Command + +See [CM installation guide](https://docs.mlcommons.org/inference/install/). + +```bash +pip install -U cmind + +cm rm cache -f + +cm pull repo gateoverflow@cm4mlops --checkout=50431589d01cd60060a0d1be3c1f8193d99c6144 + +cm run script \ + --tags=app,mlperf,inference,generic,_nvidia,_sdxl,_tensorrt,_test,_r4.1-dev_default,_float16,_offline \ + --quiet=true \ + --env.CM_MLPERF_MODEL_SDXL_DOWNLOAD_TO_HOST=yes \ + --env.CM_QUIET=yes \ + --env.CM_MLPERF_IMPLEMENTATION=nvidia \ + --env.CM_MLPERF_MODEL=sdxl \ + --env.CM_MLPERF_RUN_STYLE=test \ + --env.CM_MLPERF_BACKEND=tensorrt \ + --env.CM_MLPERF_SUBMISSION_SYSTEM_TYPE=datacenter \ + --env.CM_MLPERF_CLEAN_ALL=True \ + --env.CM_MLPERF_DEVICE= \ + --env.CM_MLPERF_USE_DOCKER=True \ + --env.CM_MLPERF_MODEL_PRECISION=float16 \ + --env.OUTPUT_BASE_DIR=/home/arjun/scc_gh_action_results \ + --env.CM_MLPERF_LOADGEN_SCENARIO=Offline \ + --env.CM_MLPERF_INFERENCE_SUBMISSION_DIR=/home/arjun/scc_gh_action_submissions \ + --env.CM_MLPERF_INFERENCE_VERSION=4.1-dev \ + --env.CM_RUN_MLPERF_INFERENCE_APP_DEFAULTS=r4.1-dev_default \ + --env.CM_MLPERF_SUBMISSION_GENERATION_STYLE=short \ + --env.CM_MLPERF_SUT_NAME_RUN_CONFIG_SUFFIX4=scc24-base \ + --env.CM_DOCKER_IMAGE_NAME=scc24-nvidia \ + --env.CM_MLPERF_LOADGEN_ALL_MODES=yes \ + --env.CM_MLPERF_LAST_RELEASE=v4.0 \ + --env.CM_TMP_CURRENT_PATH=/home/arjun/actions-runner/_work/cm4mlops/cm4mlops \ + --env.CM_TMP_PIP_VERSION_STRING= \ + --env.CM_MODEL=sdxl \ + --env.CM_MLPERF_LOADGEN_COMPLIANCE=no \ + --env.CM_MLPERF_CLEAN_SUBMISSION_DIR=yes \ + --env.CM_RERUN=yes \ + --env.CM_MLPERF_LOADGEN_EXTRA_OPTIONS= \ + --env.CM_MLPERF_LOADGEN_MODE=performance \ + --env.CM_MLPERF_LOADGEN_SCENARIOS,=Offline \ + --env.CM_MLPERF_LOADGEN_MODES,=performance,accuracy \ + --env.CM_OUTPUT_FOLDER_NAME=test_results \ + --add_deps_recursive.get-mlperf-inference-results-dir.tags=_version.r4_1-dev \ + --add_deps_recursive.get-mlperf-inference-submission-dir.tags=_version.r4_1-dev \ + --add_deps_recursive.mlperf-inference-nvidia-scratch-space.tags=_version.r4_1-dev \ + --add_deps_recursive.submission-checker.tags=_short-run \ + --add_deps_recursive.coco2014-preprocessed.tags=_size.50,_with-sample-ids \ + --add_deps_recursive.coco2014-dataset.tags=_size.50,_with-sample-ids \ + --add_deps_recursive.nvidia-preprocess-data.extra_cache_tags=scc24-base \ + --v=False \ + --print_env=False \ + --print_deps=False \ + --dump_version_info=True \ + --env.OUTPUT_BASE_DIR=/home/arjun/scc_gh_action_results \ + --env.CM_MLPERF_INFERENCE_SUBMISSION_DIR=/home/arjun/scc_gh_action_submissions \ + --env.SDXL_CHECKPOINT_PATH=/home/cmuser/CM/repos/local/cache/6be1f30ecbde4c4e/stable_diffusion_fp16 \ + --env.MLPERF_SCRATCH_PATH=/home/cmuser/CM/repos/local/cache/e066920512fd47b7 +``` +*Note that if you want to use the [latest automation recipes](https://docs.mlcommons.org/inference) for MLPerf (CM scripts), + you should simply reload gateoverflow@cm4mlops without checkout and clean CM cache as follows:* + +```bash +cm rm repo gateoverflow@cm4mlops +cm pull repo gateoverflow@cm4mlops +cm rm cache -f + +``` + +## Results + +Platform: 97c3ec750d0e-nvidia-gpu-TensorRT-scc24-base + +Model Precision: int8 + +### Accuracy Results +`CLIP_SCORE`: `15.47816`, Required accuracy for closed division `>= 31.68632` and `<= 31.81332` +`FID_SCORE`: `232.17873`, Required accuracy for closed division `>= 23.01086` and `<= 23.95008` + +### Performance Results +`Samples per second`: `1.13424` diff --git a/open/MLCommons/measurements/gh_action-reference-gpu-pytorch_v2.4.1-cu124/README.md b/open/MLCommons/measurements/gh_action-reference-gpu-pytorch_v2.4.1-cu124/README.md new file mode 100644 index 0000000..5c1dc8e --- /dev/null +++ b/open/MLCommons/measurements/gh_action-reference-gpu-pytorch_v2.4.1-cu124/README.md @@ -0,0 +1,3 @@ +| Model | Scenario | Accuracy | Throughput | Latency (in ms) | +|---------------------|------------|-----------------------|--------------|-------------------| +| stable-diffusion-xl | offline | (15.18544, 235.69504) | 0.346 | - | \ No newline at end of file diff --git a/open/MLCommons/measurements/gh_action-reference-gpu-pytorch_v2.4.1-cu124/stable-diffusion-xl/offline/README.md b/open/MLCommons/measurements/gh_action-reference-gpu-pytorch_v2.4.1-cu124/stable-diffusion-xl/offline/README.md new file mode 100644 index 0000000..499f875 --- /dev/null +++ b/open/MLCommons/measurements/gh_action-reference-gpu-pytorch_v2.4.1-cu124/stable-diffusion-xl/offline/README.md @@ -0,0 +1,102 @@ +This experiment is generated using the [MLCommons Collective Mind automation framework (CM)](https://github.com/mlcommons/cm4mlops). + +*Check [CM MLPerf docs](https://docs.mlcommons.org/inference) for more details.* + +## Host platform + +* OS version: Linux-6.2.0-39-generic-x86_64-with-glibc2.35 +* CPU version: x86_64 +* Python version: 3.10.12 (main, Sep 11 2024, 15:47:36) [GCC 11.4.0] +* MLCommons CM version: 3.0.1 + +## CM Run Command + +See [CM installation guide](https://docs.mlcommons.org/inference/install/). + +```bash +pip install -U cmind + +cm rm cache -f + +cm pull repo gateoverflow@cm4mlops --checkout=52f2ebb1436d6e255d60a3dc0acf99e4f24f492d + +cm run script \ + --tags=app,mlperf,inference,generic,_reference,_sdxl,_pytorch,_cuda,_test,_r4.1-dev_default,_float16,_offline \ + --quiet=true \ + --env.CM_MLPERF_MODEL_SDXL_DOWNLOAD_TO_HOST=yes \ + --env.CM_QUIET=yes \ + --env.CM_MLPERF_IMPLEMENTATION=reference \ + --env.CM_MLPERF_MODEL=sdxl \ + --env.CM_MLPERF_RUN_STYLE=test \ + --env.CM_MLPERF_BACKEND=pytorch \ + --env.CM_MLPERF_CLEAN_ALL=True \ + --env.CM_MLPERF_DEVICE=cuda \ + --env.CM_MLPERF_USE_DOCKER=True \ + --env.CM_HW_NAME=gh_action \ + --env.CM_MLPERF_MODEL_PRECISION=float16 \ + --env.OUTPUT_BASE_DIR=/home/arjun/gh_action_results \ + --env.CM_MLPERF_LOADGEN_SCENARIO=Offline \ + --env.CM_MLPERF_INFERENCE_SUBMISSION_DIR=/home/arjun/gh_action_submissions \ + --env.CM_MLPERF_SUBMITTER=MLCommons \ + --env.CM_MLPERF_LOADGEN_TARGET_QPS=1 \ + --env.CM_TEST_QUERY_COUNT=1 \ + --env.CM_MLPERF_LOADGEN_COMPLIANCE=no \ + --env.CM_MLPERF_SUBMISSION_RUN=yes \ + --env.CM_RUN_MLPERF_ACCURACY=on \ + --env.CM_RUN_SUBMISSION_CHECKER=yes \ + --env.CM_TAR_SUBMISSION_DIR=yes \ + --env.CM_MLPERF_SUBMISSION_GENERATION_STYLE=short \ + --env.CM_MLPERF_LOADGEN_ALL_MODES=yes \ + --env.CM_MLPERF_INFERENCE_VERSION=4.1-dev \ + --env.CM_RUN_MLPERF_INFERENCE_APP_DEFAULTS=r4.1-dev_default \ + --env.CM_MLPERF_LAST_RELEASE=v4.0 \ + --env.CM_TMP_CURRENT_PATH=/home/arjun/actions-runner/_work/cm4mlops/cm4mlops \ + --env.CM_TMP_PIP_VERSION_STRING= \ + --env.CM_MODEL=sdxl \ + --env.CM_MLPERF_CLEAN_SUBMISSION_DIR=yes \ + --env.CM_RERUN=yes \ + --env.CM_MLPERF_LOADGEN_EXTRA_OPTIONS= \ + --env.CM_MLPERF_LOADGEN_MODE=performance \ + --env.CM_MLPERF_LOADGEN_SCENARIOS,=Offline \ + --env.CM_MLPERF_LOADGEN_MODES,=performance,accuracy \ + --env.CM_OUTPUT_FOLDER_NAME=test_results \ + --add_deps_recursive.compiler.tags=gcc \ + --add_deps_recursive.submission-checker.tags=_short-run \ + --add_deps_recursive.get-mlperf-inference-results-dir.tags=_version.r4_1-dev \ + --add_deps_recursive.get-mlperf-inference-submission-dir.tags=_version.r4_1-dev \ + --add_deps_recursive.mlperf-inference-nvidia-scratch-space.tags=_version.r4_1-dev \ + --adr.compiler.tags=gcc \ + --adr.submission-checker.tags=_short-run \ + --adr.get-mlperf-inference-results-dir.tags=_version.r4_1-dev \ + --adr.get-mlperf-inference-submission-dir.tags=_version.r4_1-dev \ + --adr.mlperf-inference-nvidia-scratch-space.tags=_version.r4_1-dev \ + --v=False \ + --print_env=False \ + --print_deps=False \ + --dump_version_info=True \ + --env.OUTPUT_BASE_DIR=/home/arjun/gh_action_results \ + --env.CM_MLPERF_INFERENCE_SUBMISSION_DIR=/home/arjun/gh_action_submissions \ + --env.SDXL_CHECKPOINT_PATH=/home/cmuser/CM/repos/local/cache/6be1f30ecbde4c4e/stable_diffusion_fp16 +``` +*Note that if you want to use the [latest automation recipes](https://docs.mlcommons.org/inference) for MLPerf (CM scripts), + you should simply reload gateoverflow@cm4mlops without checkout and clean CM cache as follows:* + +```bash +cm rm repo gateoverflow@cm4mlops +cm pull repo gateoverflow@cm4mlops +cm rm cache -f + +``` + +## Results + +Platform: gh_action-reference-gpu-pytorch_v2.4.1-cu124 + +Model Precision: fp32 + +### Accuracy Results +`CLIP_SCORE`: `15.18544`, Required accuracy for closed division `>= 31.68632` and `<= 31.81332` +`FID_SCORE`: `235.69504`, Required accuracy for closed division `>= 23.01086` and `<= 23.95008` + +### Performance Results +`Samples per second`: `0.345763` diff --git a/open/MLCommons/measurements/gh_action-reference-gpu-pytorch_v2.4.1-cu124/stable-diffusion-xl/offline/accuracy_console.out b/open/MLCommons/measurements/gh_action-reference-gpu-pytorch_v2.4.1-cu124/stable-diffusion-xl/offline/accuracy_console.out new file mode 100644 index 0000000..e69de29 diff --git a/open/MLCommons/measurements/gh_action-reference-gpu-pytorch_v2.4.1-cu124/stable-diffusion-xl/offline/cm-version-info.json b/open/MLCommons/measurements/gh_action-reference-gpu-pytorch_v2.4.1-cu124/stable-diffusion-xl/offline/cm-version-info.json new file mode 100644 index 0000000..71ac698 --- /dev/null +++ b/open/MLCommons/measurements/gh_action-reference-gpu-pytorch_v2.4.1-cu124/stable-diffusion-xl/offline/cm-version-info.json @@ -0,0 +1,574 @@ +{ + "app-mlperf-inference,d775cac873ee4231:reference,sdxl,pytorch,cuda,test,r4.1-dev_default,float16,offline": [ + { + "detect,os": { + "script_uid": "863735b7db8c44fc", + "script_alias": "detect-os", + "script_tags": "detect-os,detect,os,info", + "script_variations": "", + "version": "", + "parent": "app-mlperf-inference,d775cac873ee4231 ( reference,_sdxl,_pytorch,_cuda,_test,_r4.1-dev_default,_float16,_offline )" + } + }, + { + "get,sys-utils-cm": { + "script_uid": "bc90993277e84b8e", + "script_alias": "get-sys-utils-cm", + "script_tags": "get,sys-utils-cm", + "script_variations": "", + "version": "", + "parent": "app-mlperf-inference,d775cac873ee4231 ( reference,_sdxl,_pytorch,_cuda,_test,_r4.1-dev_default,_float16,_offline )" + } + }, + { + "get,python": { + "script_uid": "d0b5dd74373f4a62", + "script_alias": "get-python3", + "script_tags": "get,python,python3,get-python,get-python3", + "script_variations": "", + "version": "3.10.12", + "parent": "app-mlperf-inference,d775cac873ee4231 ( reference,_sdxl,_pytorch,_cuda,_test,_r4.1-dev_default,_float16,_offline )" + } + }, + { + "get,mlcommons,inference,src": { + "script_uid": "4b57186581024797", + "script_alias": "get-mlperf-inference-src", + "script_tags": "get,src,source,inference,inference-src,inference-source,mlperf,mlcommons", + "script_variations": "", + "version": "master-git-f5c8f1758374aeaba26b2e84d31690111cfdf054", + "parent": "app-mlperf-inference,d775cac873ee4231 ( reference,_sdxl,_pytorch,_cuda,_test,_r4.1-dev_default,_float16,_offline )" + } + }, + { + "get,mlperf,inference,src": { + "script_uid": "4b57186581024797", + "script_alias": "get-mlperf-inference-src", + "script_tags": "get,src,source,inference,inference-src,inference-source,mlperf,mlcommons", + "script_variations": "", + "version": "master-git-f5c8f1758374aeaba26b2e84d31690111cfdf054", + "parent": "get-mlperf-inference-utils,e341e5f86d8342e5" + } + }, + { + "get,mlperf,inference,utils": { + "script_uid": "e341e5f86d8342e5", + "script_alias": "get-mlperf-inference-utils", + "script_tags": "get,mlperf,inference,util,utils,functions", + "script_variations": "", + "version": "", + "parent": "app-mlperf-inference,d775cac873ee4231 ( reference,_sdxl,_pytorch,_cuda,_test,_r4.1-dev_default,_float16,_offline )" + } + }, + { + "detect,os": { + "script_uid": "863735b7db8c44fc", + "script_alias": "detect-os", + "script_tags": "detect-os,detect,os,info", + "script_variations": "", + "version": "", + "parent": "get-cuda,46d133d9ef92422d ( toolkit )" + } + }, + { + "get,cuda,_toolkit": { + "script_uid": "46d133d9ef92422d", + "script_alias": "get-cuda", + "script_tags": "get,cuda,cuda-compiler,cuda-lib,toolkit,lib,nvcc,get-nvcc,get-cuda,46d133d9ef92422d", + "script_variations": "toolkit", + "version": "12.4", + "parent": "get-cuda-devices,7a3ede4d3558427a ( with-pycuda )" + } + }, + { + "get,python3": { + "script_uid": "d0b5dd74373f4a62", + "script_alias": "get-python3", + "script_tags": "get,python,python3,get-python,get-python3", + "script_variations": "", + "version": "3.10.12", + "parent": "get-cuda-devices,7a3ede4d3558427a ( with-pycuda )" + } + }, + { + "detect,os": { + "script_uid": "863735b7db8c44fc", + "script_alias": "detect-os", + "script_tags": "detect-os,detect,os,info", + "script_variations": "", + "version": "", + "parent": "get-generic-python-lib,94b62a682bc44791 ( package.pycuda )" + } + }, + { + "detect,os": { + "script_uid": "863735b7db8c44fc", + "script_alias": "detect-os", + "script_tags": "detect-os,detect,os,info", + "script_variations": "", + "version": "", + "parent": "detect-cpu,586c8a43320142f7" + } + }, + { + "detect,cpu": { + "script_uid": "586c8a43320142f7", + "script_alias": "detect-cpu", + "script_tags": "detect,cpu,detect-cpu,info", + "script_variations": "", + "version": "", + "parent": "get-generic-python-lib,94b62a682bc44791 ( package.pycuda )" + } + }, + { + "get,python3": { + "script_uid": "d0b5dd74373f4a62", + "script_alias": "get-python3", + "script_tags": "get,python,python3,get-python,get-python3", + "script_variations": "", + "version": "3.10.12", + "parent": "get-generic-python-lib,94b62a682bc44791 ( package.pycuda )" + } + }, + { + "get,generic-python-lib,_pip": { + "script_uid": "94b62a682bc44791", + "script_alias": "get-generic-python-lib", + "script_tags": "get,install,generic,generic-python-lib", + "script_variations": "pip", + "version": "22.0.2", + "parent": "get-generic-python-lib,94b62a682bc44791 ( package.pycuda )" + } + }, + { + "get,generic-python-lib,_package.pycuda": { + "script_uid": "94b62a682bc44791", + "script_alias": "get-generic-python-lib", + "script_tags": "get,install,generic,generic-python-lib", + "script_variations": "package.pycuda", + "version": "2024.1.2", + "parent": "get-cuda-devices,7a3ede4d3558427a ( with-pycuda )" + } + }, + { + "detect,os": { + "script_uid": "863735b7db8c44fc", + "script_alias": "detect-os", + "script_tags": "detect-os,detect,os,info", + "script_variations": "", + "version": "", + "parent": "get-generic-python-lib,94b62a682bc44791 ( package.numpy )" + } + }, + { + "detect,os": { + "script_uid": "863735b7db8c44fc", + "script_alias": "detect-os", + "script_tags": "detect-os,detect,os,info", + "script_variations": "", + "version": "", + "parent": "detect-cpu,586c8a43320142f7" + } + }, + { + "detect,cpu": { + "script_uid": "586c8a43320142f7", + "script_alias": "detect-cpu", + "script_tags": "detect,cpu,detect-cpu,info", + "script_variations": "", + "version": "", + "parent": "get-generic-python-lib,94b62a682bc44791 ( package.numpy )" + } + }, + { + "get,python3": { + "script_uid": "d0b5dd74373f4a62", + "script_alias": "get-python3", + "script_tags": "get,python,python3,get-python,get-python3", + "script_variations": "", + "version": "3.10.12", + "parent": "get-generic-python-lib,94b62a682bc44791 ( package.numpy )" + } + }, + { + "get,generic-python-lib,_pip": { + "script_uid": "94b62a682bc44791", + "script_alias": "get-generic-python-lib", + "script_tags": "get,install,generic,generic-python-lib", + "script_variations": "pip", + "version": "22.0.2", + "parent": "get-generic-python-lib,94b62a682bc44791 ( package.numpy )" + } + }, + { + "get,generic-python-lib,_package.numpy": { + "script_uid": "94b62a682bc44791", + "script_alias": "get-generic-python-lib", + "script_tags": "get,install,generic,generic-python-lib", + "script_variations": "package.numpy", + "version": "1.26.4", + "parent": "get-cuda-devices,7a3ede4d3558427a ( with-pycuda )" + } + }, + { + "get,cuda-devices,_with-pycuda": { + "script_uid": "7a3ede4d3558427a", + "script_alias": "get-cuda-devices", + "script_tags": "get,cuda-devices", + "script_variations": "with-pycuda", + "version": "", + "parent": "app-mlperf-inference,d775cac873ee4231 ( reference,_sdxl,_pytorch,_cuda,_test,_r4.1-dev_default,_float16,_offline )" + } + }, + { + "detect,os": { + "script_uid": "863735b7db8c44fc", + "script_alias": "detect-os", + "script_tags": "detect-os,detect,os,info", + "script_variations": "", + "version": "", + "parent": "app-mlperf-inference-mlcommons-python,ff149e9781fc4b65 ( offline,_pytorch,_sdxl,_cuda,_float16 )" + } + }, + { + "detect,os": { + "script_uid": "863735b7db8c44fc", + "script_alias": "detect-os", + "script_tags": "detect-os,detect,os,info", + "script_variations": "", + "version": "", + "parent": "detect-cpu,586c8a43320142f7" + } + }, + { + "detect,cpu": { + "script_uid": "586c8a43320142f7", + "script_alias": "detect-cpu", + "script_tags": "detect,cpu,detect-cpu,info", + "script_variations": "", + "version": "", + "parent": "app-mlperf-inference-mlcommons-python,ff149e9781fc4b65 ( offline,_pytorch,_sdxl,_cuda,_float16 )" + } + }, + { + "get,sys-utils-cm": { + "script_uid": "bc90993277e84b8e", + "script_alias": "get-sys-utils-cm", + "script_tags": "get,sys-utils-cm", + "script_variations": "", + "version": "", + "parent": "app-mlperf-inference-mlcommons-python,ff149e9781fc4b65 ( offline,_pytorch,_sdxl,_cuda,_float16 )" + } + }, + { + "get,python": { + "script_uid": "d0b5dd74373f4a62", + "script_alias": "get-python3", + "script_tags": "get,python,python3,get-python,get-python3", + "script_variations": "", + "version": "3.10.12", + "parent": "app-mlperf-inference-mlcommons-python,ff149e9781fc4b65 ( offline,_pytorch,_sdxl,_cuda,_float16 )" + } + }, + { + "get,cuda,_cudnn": { + "script_uid": "46d133d9ef92422d", + "script_alias": "get-cuda", + "script_tags": "get,cuda,cuda-compiler,cuda-lib,toolkit,lib,nvcc,get-nvcc,get-cuda,46d133d9ef92422d", + "script_variations": "cudnn", + "version": "12.4", + "parent": "app-mlperf-inference-mlcommons-python,ff149e9781fc4b65 ( offline,_pytorch,_sdxl,_cuda,_float16 )" + } + }, + { + "get,generic-python-lib,_torch_cuda": { + "script_uid": "94b62a682bc44791", + "script_alias": "get-generic-python-lib", + "script_tags": "get,install,generic,generic-python-lib", + "script_variations": "torch_cuda", + "version": "2.4.1", + "parent": "app-mlperf-inference-mlcommons-python,ff149e9781fc4b65 ( offline,_pytorch,_sdxl,_cuda,_float16 )" + } + }, + { + "get,generic-python-lib,_torchvision_cuda": { + "script_uid": "94b62a682bc44791", + "script_alias": "get-generic-python-lib", + "script_tags": "get,install,generic,generic-python-lib", + "script_variations": "torchvision_cuda", + "version": "0.19.1", + "parent": "app-mlperf-inference-mlcommons-python,ff149e9781fc4b65 ( offline,_pytorch,_sdxl,_cuda,_float16 )" + } + }, + { + "get,ml-model,stable-diffusion,text-to-image,sdxl,raw,_pytorch": { + "script_uid": "22c6516b2d4d4c23", + "script_alias": "get-ml-model-stable-diffusion", + "script_tags": "get,raw,ml-model,stable-diffusion,sdxl,text-to-image", + "script_variations": "pytorch", + "version": "", + "parent": "app-mlperf-inference-mlcommons-python,ff149e9781fc4b65 ( offline,_pytorch,_sdxl,_cuda,_float16 )" + } + }, + { + "get,dataset,coco2014,_validation": { + "script_uid": "3f7ad9d42f4040f8", + "script_alias": "get-dataset-coco2014", + "script_tags": "get,dataset,coco2014,object-detection,original", + "script_variations": "validation", + "version": "", + "parent": "app-mlperf-inference-mlcommons-python,ff149e9781fc4b65 ( offline,_pytorch,_sdxl,_cuda,_float16 )" + } + }, + { + "detect,os": { + "script_uid": "863735b7db8c44fc", + "script_alias": "detect-os", + "script_tags": "detect-os,detect,os,info", + "script_variations": "", + "version": "", + "parent": "generate-mlperf-inference-user-conf,3af4475745964b93" + } + }, + { + "detect,os": { + "script_uid": "863735b7db8c44fc", + "script_alias": "detect-os", + "script_tags": "detect-os,detect,os,info", + "script_variations": "", + "version": "", + "parent": "detect-cpu,586c8a43320142f7" + } + }, + { + "detect,cpu": { + "script_uid": "586c8a43320142f7", + "script_alias": "detect-cpu", + "script_tags": "detect,cpu,detect-cpu,info", + "script_variations": "", + "version": "", + "parent": "generate-mlperf-inference-user-conf,3af4475745964b93" + } + }, + { + "get,python": { + "script_uid": "d0b5dd74373f4a62", + "script_alias": "get-python3", + "script_tags": "get,python,python3,get-python,get-python3", + "script_variations": "", + "version": "3.10.12", + "parent": "generate-mlperf-inference-user-conf,3af4475745964b93" + } + }, + { + "get,mlcommons,inference,src": { + "script_uid": "4b57186581024797", + "script_alias": "get-mlperf-inference-src", + "script_tags": "get,src,source,inference,inference-src,inference-source,mlperf,mlcommons", + "script_variations": "", + "version": "master-git-f5c8f1758374aeaba26b2e84d31690111cfdf054", + "parent": "generate-mlperf-inference-user-conf,3af4475745964b93" + } + }, + { + "get,cache,dir,_name.mlperf-inference-sut-configs": { + "script_uid": "48f4622e059b45ce", + "script_alias": "get-cache-dir", + "script_tags": "get,cache,dir,directory", + "script_variations": "name.mlperf-inference-sut-configs", + "version": "", + "parent": "get-mlperf-inference-sut-configs,c2fbf72009e2445b" + } + }, + { + "get,sut,configs": { + "script_uid": "c2fbf72009e2445b", + "script_alias": "get-mlperf-inference-sut-configs", + "script_tags": "get,mlperf,inference,sut,configs,sut-configs", + "script_variations": "", + "version": "", + "parent": "generate-mlperf-inference-user-conf,3af4475745964b93" + } + }, + { + "generate,user-conf,mlperf,inference": { + "script_uid": "3af4475745964b93", + "script_alias": "generate-mlperf-inference-user-conf", + "script_tags": "generate,mlperf,inference,user-conf,inference-user-conf", + "script_variations": "", + "version": "", + "parent": "app-mlperf-inference-mlcommons-python,ff149e9781fc4b65 ( offline,_pytorch,_sdxl,_cuda,_float16 )" + } + }, + { + "get,loadgen": { + "script_uid": "64c3d98d0ba04950", + "script_alias": "get-mlperf-inference-loadgen", + "script_tags": "get,loadgen,inference,inference-loadgen,mlperf,mlcommons", + "script_variations": "", + "version": "master", + "parent": "app-mlperf-inference-mlcommons-python,ff149e9781fc4b65 ( offline,_pytorch,_sdxl,_cuda,_float16 )" + } + }, + { + "get,mlcommons,inference,src": { + "script_uid": "4b57186581024797", + "script_alias": "get-mlperf-inference-src", + "script_tags": "get,src,source,inference,inference-src,inference-source,mlperf,mlcommons", + "script_variations": "", + "version": "master-git-f5c8f1758374aeaba26b2e84d31690111cfdf054", + "parent": "app-mlperf-inference-mlcommons-python,ff149e9781fc4b65 ( offline,_pytorch,_sdxl,_cuda,_float16 )" + } + }, + { + "get,mlcommons,inference,src": { + "script_uid": "4b57186581024797", + "script_alias": "get-mlperf-inference-src", + "script_tags": "get,src,source,inference,inference-src,inference-source,mlperf,mlcommons", + "script_variations": "", + "version": "master-git-f5c8f1758374aeaba26b2e84d31690111cfdf054", + "parent": "app-mlperf-inference-mlcommons-python,ff149e9781fc4b65 ( offline,_pytorch,_sdxl,_cuda,_float16 )" + } + }, + { + "get,generic-python-lib,_package.psutil": { + "script_uid": "94b62a682bc44791", + "script_alias": "get-generic-python-lib", + "script_tags": "get,install,generic,generic-python-lib", + "script_variations": "package.psutil", + "version": "6.0.0", + "parent": "app-mlperf-inference-mlcommons-python,ff149e9781fc4b65 ( offline,_pytorch,_sdxl,_cuda,_float16 )" + } + }, + { + "get,generic-python-lib,_package.diffusers": { + "script_uid": "94b62a682bc44791", + "script_alias": "get-generic-python-lib", + "script_tags": "get,install,generic,generic-python-lib", + "script_variations": "package.diffusers", + "version": "0.30.3", + "parent": "app-mlperf-inference-mlcommons-python,ff149e9781fc4b65 ( offline,_pytorch,_sdxl,_cuda,_float16 )" + } + }, + { + "get,generic-python-lib,_package.transformers": { + "script_uid": "94b62a682bc44791", + "script_alias": "get-generic-python-lib", + "script_tags": "get,install,generic,generic-python-lib", + "script_variations": "package.transformers", + "version": "4.45.2", + "parent": "app-mlperf-inference-mlcommons-python,ff149e9781fc4b65 ( offline,_pytorch,_sdxl,_cuda,_float16 )" + } + }, + { + "get,generic-python-lib,_package.torchvision": { + "script_uid": "94b62a682bc44791", + "script_alias": "get-generic-python-lib", + "script_tags": "get,install,generic,generic-python-lib", + "script_variations": "package.torchvision", + "version": "0.19.1", + "parent": "app-mlperf-inference-mlcommons-python,ff149e9781fc4b65 ( offline,_pytorch,_sdxl,_cuda,_float16 )" + } + }, + { + "get,generic-python-lib,_package.accelerate": { + "script_uid": "94b62a682bc44791", + "script_alias": "get-generic-python-lib", + "script_tags": "get,install,generic,generic-python-lib", + "script_variations": "package.accelerate", + "version": "1.0.0", + "parent": "app-mlperf-inference-mlcommons-python,ff149e9781fc4b65 ( offline,_pytorch,_sdxl,_cuda,_float16 )" + } + }, + { + "get,generic-python-lib,_package.torchmetrics": { + "script_uid": "94b62a682bc44791", + "script_alias": "get-generic-python-lib", + "script_tags": "get,install,generic,generic-python-lib", + "script_variations": "package.torchmetrics", + "version": "1.4.2", + "parent": "app-mlperf-inference-mlcommons-python,ff149e9781fc4b65 ( offline,_pytorch,_sdxl,_cuda,_float16 )" + } + }, + { + "get,generic-python-lib,_package.torch-fidelity": { + "script_uid": "94b62a682bc44791", + "script_alias": "get-generic-python-lib", + "script_tags": "get,install,generic,generic-python-lib", + "script_variations": "package.torch-fidelity", + "version": "0.3.0", + "parent": "app-mlperf-inference-mlcommons-python,ff149e9781fc4b65 ( offline,_pytorch,_sdxl,_cuda,_float16 )" + } + }, + { + "get,generic-python-lib,_package.open_clip_torch": { + "script_uid": "94b62a682bc44791", + "script_alias": "get-generic-python-lib", + "script_tags": "get,install,generic,generic-python-lib", + "script_variations": "package.open_clip_torch", + "version": "2.26.1", + "parent": "app-mlperf-inference-mlcommons-python,ff149e9781fc4b65 ( offline,_pytorch,_sdxl,_cuda,_float16 )" + } + }, + { + "get,generic-python-lib,_package.opencv-python": { + "script_uid": "94b62a682bc44791", + "script_alias": "get-generic-python-lib", + "script_tags": "get,install,generic,generic-python-lib", + "script_variations": "package.opencv-python", + "version": "4.10.0.84", + "parent": "app-mlperf-inference-mlcommons-python,ff149e9781fc4b65 ( offline,_pytorch,_sdxl,_cuda,_float16 )" + } + }, + { + "get,generic-python-lib,_package.scipy": { + "script_uid": "94b62a682bc44791", + "script_alias": "get-generic-python-lib", + "script_tags": "get,install,generic,generic-python-lib", + "script_variations": "package.scipy", + "version": "1.10.1", + "parent": "app-mlperf-inference-mlcommons-python,ff149e9781fc4b65 ( offline,_pytorch,_sdxl,_cuda,_float16 )" + } + }, + { + "detect,os": { + "script_uid": "863735b7db8c44fc", + "script_alias": "detect-os", + "script_tags": "detect-os,detect,os,info", + "script_variations": "", + "version": "", + "parent": "detect-cpu,586c8a43320142f7" + } + }, + { + "detect,cpu": { + "script_uid": "586c8a43320142f7", + "script_alias": "detect-cpu", + "script_tags": "detect,cpu,detect-cpu,info", + "script_variations": "", + "version": "", + "parent": "benchmark-program,19f369ef47084895" + } + }, + { + "benchmark-program,program": { + "script_uid": "19f369ef47084895", + "script_alias": "benchmark-program", + "script_tags": "program,benchmark,benchmark-program", + "script_variations": "", + "version": "", + "parent": "benchmark-program-mlperf,cfff0132a8aa4018" + } + }, + { + "benchmark-mlperf": { + "script_uid": "cfff0132a8aa4018", + "script_alias": "benchmark-program-mlperf", + "script_tags": "mlperf,benchmark-mlperf", + "script_variations": "", + "version": "", + "parent": "app-mlperf-inference-mlcommons-python,ff149e9781fc4b65 ( offline,_pytorch,_sdxl,_cuda,_float16 )" + } + } + ] +} \ No newline at end of file diff --git a/open/MLCommons/measurements/gh_action-reference-gpu-pytorch_v2.4.1-cu124/stable-diffusion-xl/offline/cpu_info.json b/open/MLCommons/measurements/gh_action-reference-gpu-pytorch_v2.4.1-cu124/stable-diffusion-xl/offline/cpu_info.json new file mode 100644 index 0000000..e779be5 --- /dev/null +++ b/open/MLCommons/measurements/gh_action-reference-gpu-pytorch_v2.4.1-cu124/stable-diffusion-xl/offline/cpu_info.json @@ -0,0 +1,27 @@ +{ + "CM_HOST_CPU_WRITE_PROTECT_SUPPORT": "yes", + "CM_HOST_CPU_MICROCODE": "0x2b0004d0", + "CM_HOST_CPU_FPU_SUPPORT": "yes", + "CM_HOST_CPU_FPU_EXCEPTION_SUPPORT": "yes", + "CM_HOST_CPU_BUGS": "spectre_v1 spectre_v2 spec_store_bypass swapgs eibrs_pbrsb", + "CM_HOST_CPU_TLB_SIZE": "Not Found", + "CM_HOST_CPU_CFLUSH_SIZE": "64", + "CM_HOST_CPU_ARCHITECTURE": "x86_64", + "CM_HOST_CPU_TOTAL_CORES": "48", + "CM_HOST_CPU_ON_LINE_CPUS_LIST": "0-47", + "CM_HOST_CPU_VENDOR_ID": "GenuineIntel", + "CM_HOST_CPU_MODEL_NAME": "Intel(R) Xeon(R) w7-2495X", + "CM_HOST_CPU_FAMILY": "6", + "CM_HOST_CPU_THREADS_PER_CORE": "2", + "CM_HOST_CPU_PHYSICAL_CORES_PER_SOCKET": "24", + "CM_HOST_CPU_SOCKETS": "1", + "CM_HOST_CPU_MAX_MHZ": "4800.0000", + "CM_HOST_CPU_L1D_CACHE_SIZE": "1.1 MiB (24 instances)", + "CM_HOST_CPU_L1I_CACHE_SIZE": "768 KiB (24 instances)", + "CM_HOST_CPU_L2_CACHE_SIZE": "48 MiB (24 instances)", + "CM_HOST_CPU_L3_CACHE_SIZE": "45 MiB (1 instance)", + "CM_HOST_CPU_NUMA_NODES": "1", + "CM_HOST_CPU_TOTAL_LOGICAL_CORES": "48", + "CM_HOST_MEMORY_CAPACITY": "192G", + "CM_HOST_DISK_CAPACITY": "6.9T" +} \ No newline at end of file diff --git a/open/MLCommons/measurements/gh_action-reference-gpu-pytorch_v2.4.1-cu124/stable-diffusion-xl/offline/gh_action-reference-gpu-pytorch_v2.4.1-cu124.json b/open/MLCommons/measurements/gh_action-reference-gpu-pytorch_v2.4.1-cu124/stable-diffusion-xl/offline/gh_action-reference-gpu-pytorch_v2.4.1-cu124.json new file mode 100644 index 0000000..d47b6cc --- /dev/null +++ b/open/MLCommons/measurements/gh_action-reference-gpu-pytorch_v2.4.1-cu124/stable-diffusion-xl/offline/gh_action-reference-gpu-pytorch_v2.4.1-cu124.json @@ -0,0 +1,7 @@ +{ + "starting_weights_filename": "https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0", + "retraining": "no", + "input_data_types": "fp32", + "weight_data_types": "fp32", + "weight_transformations": "no" +} \ No newline at end of file diff --git a/open/MLCommons/measurements/gh_action-reference-gpu-pytorch_v2.4.1-cu124/stable-diffusion-xl/offline/mlperf.conf b/open/MLCommons/measurements/gh_action-reference-gpu-pytorch_v2.4.1-cu124/stable-diffusion-xl/offline/mlperf.conf new file mode 100644 index 0000000..10f7ae7 --- /dev/null +++ b/open/MLCommons/measurements/gh_action-reference-gpu-pytorch_v2.4.1-cu124/stable-diffusion-xl/offline/mlperf.conf @@ -0,0 +1,98 @@ +# The format of this config file is 'key = value'. +# The key has the format 'model.scenario.key'. Value is mostly int64_t. +# Model maybe '*' as wildcard. In that case the value applies to all models. +# All times are in milli seconds + +# Set performance_sample_count for each model. +# User can optionally set this to higher values in user.conf. +resnet50.*.performance_sample_count_override = 1024 +ssd-mobilenet.*.performance_sample_count_override = 256 +retinanet.*.performance_sample_count_override = 64 +bert.*.performance_sample_count_override = 10833 +dlrm.*.performance_sample_count_override = 204800 +dlrm-v2.*.performance_sample_count_override = 204800 +rnnt.*.performance_sample_count_override = 2513 +gptj.*.performance_sample_count_override = 13368 +llama2-70b.*.performance_sample_count_override = 24576 +stable-diffusion-xl.*.performance_sample_count_override = 5000 +# set to 0 to let entire sample set to be performance sample +3d-unet.*.performance_sample_count_override = 0 + +# Set seeds. The seeds will be distributed two weeks before the submission. +*.*.qsl_rng_seed = 3066443479025735752 +*.*.sample_index_rng_seed = 10688027786191513374 +*.*.schedule_rng_seed = 14962580496156340209 +# Set seeds for TEST_05. The seeds will be distributed two weeks before the submission. +*.*.test05_qsl_rng_seed = 16799458546791641818 +*.*.test05_sample_index_rng_seed = 5453809927556429288 +*.*.test05_schedule_rng_seed = 5435552105434836064 + + +*.SingleStream.target_latency_percentile = 90 +*.SingleStream.min_duration = 600000 + +*.MultiStream.target_latency_percentile = 99 +*.MultiStream.samples_per_query = 8 +*.MultiStream.min_duration = 600000 +*.MultiStream.min_query_count = 662 +retinanet.MultiStream.target_latency = 528 + +# 3D-UNet uses equal issue mode because it has non-uniform inputs +3d-unet.*.sample_concatenate_permutation = 1 + +# LLM benchmarks have non-uniform inputs and outputs, and use equal issue mode for all latency scenario +gptj.*.sample_concatenate_permutation = 1 +llama2-70b.*.sample_concatenate_permutation = 1 +mixtral-8x7b.*.sample_concatenate_permutation = 1 + +*.Server.target_latency = 10 +*.Server.target_latency_percentile = 99 +*.Server.target_duration = 0 +*.Server.min_duration = 600000 +resnet50.Server.target_latency = 15 +retinanet.Server.target_latency = 100 +bert.Server.target_latency = 130 +dlrm.Server.target_latency = 60 +dlrm-v2.Server.target_latency = 60 +rnnt.Server.target_latency = 1000 +gptj.Server.target_latency = 20000 +stable-diffusion-xl.Server.target_latency = 20000 +# Llama2-70b benchmarks measures token latencies +llama2-70b.*.use_token_latencies = 1 +mixtral-8x7b.*.use_token_latencies = 1 +# gptj benchmark infers token latencies +gptj.*.infer_token_latencies = 1 +gptj.*.token_latency_scaling_factor = 69 +# Only ttft and tpot are tracked for the llama2-70b & mixtral-8x7B benchmark therefore target_latency = 0 +llama2-70b.Server.target_latency = 0 +llama2-70b.Server.ttft_latency = 2000 +llama2-70b.Server.tpot_latency = 200 + +mixtral-8x7b.Server.target_latency = 0 +mixtral-8x7b.Server.ttft_latency = 2000 +mixtral-8x7b.Server.tpot_latency = 200 + +*.Offline.target_latency_percentile = 90 +*.Offline.min_duration = 600000 + +# In Offline scenario, we always have one query. But LoadGen maps this to +# min_sample_count internally in Offline scenario. If the dataset size is larger +# than 24576 we limit the min_query_count to 24576 and otherwise we use +# the dataset size as the limit + +resnet50.Offline.min_query_count = 24576 +retinanet.Offline.min_query_count = 24576 +dlrm-v2.Offline.min_query_count = 24576 +bert.Offline.min_query_count = 10833 +gptj.Offline.min_query_count = 13368 +rnnt.Offline.min_query_count = 2513 +3d-unet.Offline.min_query_count = 43 +stable-diffusion-xl.Offline.min_query_count = 5000 +llama2-70b.Offline.min_query_count = 24576 +mixtral-8x7b.Offline.min_query_count = 15000 + +# These fields should be defined and overridden by user.conf. +*.SingleStream.target_latency = 10 +*.MultiStream.target_latency = 80 +*.Server.target_qps = 1.0 +*.Offline.target_qps = 1.0 diff --git a/open/MLCommons/measurements/gh_action-reference-gpu-pytorch_v2.4.1-cu124/stable-diffusion-xl/offline/os_info.json b/open/MLCommons/measurements/gh_action-reference-gpu-pytorch_v2.4.1-cu124/stable-diffusion-xl/offline/os_info.json new file mode 100644 index 0000000..a6e336d --- /dev/null +++ b/open/MLCommons/measurements/gh_action-reference-gpu-pytorch_v2.4.1-cu124/stable-diffusion-xl/offline/os_info.json @@ -0,0 +1,30 @@ +{ + "CM_HOST_OS_TYPE": "linux", + "CM_HOST_OS_BITS": "64", + "CM_HOST_OS_FLAVOR": "ubuntu", + "CM_HOST_OS_FLAVOR_LIKE": "debian", + "CM_HOST_OS_VERSION": "22.04", + "CM_HOST_OS_KERNEL_VERSION": "6.2.0-39-generic", + "CM_HOST_OS_GLIBC_VERSION": "2.35", + "CM_HOST_OS_MACHINE": "x86_64", + "CM_HOST_OS_PACKAGE_MANAGER": "apt", + "CM_HOST_OS_PACKAGE_MANAGER_INSTALL_CMD": "DEBIAN_FRONTEND=noninteractive apt-get install -y", + "CM_HOST_OS_PACKAGE_MANAGER_UPDATE_CMD": "apt-get update -y", + "+CM_HOST_OS_DEFAULT_LIBRARY_PATH": [ + "/usr/local/lib/x86_64-linux-gnu", + "/lib/x86_64-linux-gnu", + "/usr/lib/x86_64-linux-gnu", + "/usr/lib/x86_64-linux-gnu64", + "/usr/local/lib64", + "/lib64", + "/usr/lib64", + "/usr/local/lib", + "/lib", + "/usr/lib", + "/usr/x86_64-linux-gnu/lib64", + "/usr/x86_64-linux-gnu/lib" + ], + "CM_HOST_PLATFORM_FLAVOR": "x86_64", + "CM_HOST_PYTHON_BITS": "64", + "CM_HOST_SYSTEM_NAME": "0c75048abad5" +} \ No newline at end of file diff --git a/open/MLCommons/measurements/gh_action-reference-gpu-pytorch_v2.4.1-cu124/stable-diffusion-xl/offline/performance_console.out b/open/MLCommons/measurements/gh_action-reference-gpu-pytorch_v2.4.1-cu124/stable-diffusion-xl/offline/performance_console.out new file mode 100644 index 0000000..e69de29 diff --git a/open/MLCommons/measurements/gh_action-reference-gpu-pytorch_v2.4.1-cu124/stable-diffusion-xl/offline/pip_freeze.json b/open/MLCommons/measurements/gh_action-reference-gpu-pytorch_v2.4.1-cu124/stable-diffusion-xl/offline/pip_freeze.json new file mode 100644 index 0000000..297466c --- /dev/null +++ b/open/MLCommons/measurements/gh_action-reference-gpu-pytorch_v2.4.1-cu124/stable-diffusion-xl/offline/pip_freeze.json @@ -0,0 +1,73 @@ +{ + "pip_freeze": { + "accelerate": "1.0.0", + "certifi": "2024.8.30", + "charset-normalizer": "3.3.2", + "cmind": "3.0.1", + "diffusers": "0.30.3", + "dmiparser": "5.1", + "filelock": "3.16.1", + "fsspec": "2024.9.0", + "ftfy": "6.2.3", + "giturlparse": "0.12.0", + "huggingface-hub": "0.25.2", + "idna": "3.10", + "importlib_metadata": "8.5.0", + "Jinja2": "3.1.4", + "lightning-utilities": "0.11.7", + "Mako": "1.3.5", + "MarkupSafe": "3.0.1", + "mpmath": "1.3.0", + "networkx": "3.3", + "numpy": "1.26.4", + "nvidia-cublas-cu12": "12.1.3.1", + "nvidia-cuda-cupti-cu12": "12.1.105", + "nvidia-cuda-nvrtc-cu12": "12.1.105", + "nvidia-cuda-runtime-cu12": "12.1.105", + "nvidia-cudnn-cu12": "9.1.0.70", + "nvidia-cufft-cu12": "11.0.2.54", + "nvidia-curand-cu12": "10.3.2.106", + "nvidia-cusolver-cu12": "11.4.5.107", + "nvidia-cusparse-cu12": "12.1.0.106", + "nvidia-nccl-cu12": "2.20.5", + "nvidia-nvjitlink-cu12": "12.6.77", + "nvidia-nvtx-cu12": "12.1.105", + "open_clip_torch": "2.26.1", + "opencv-python": "4.10.0.84", + "packaging": "24.1", + "pandas": "2.2.3", + "pillow": "10.4.0", + "pip": "22.0.2", + "platformdirs": "4.3.6", + "psutil": "6.0.0", + "pybind11": "2.13.6", + "pycuda": "2024.1.2", + "python-dateutil": "2.9.0.post0", + "pytools": "2024.1.14", + "pytz": "2024.2", + "PyYAML": "6.0.2", + "regex": "2024.9.11", + "requests": "2.32.3", + "safetensors": "0.4.5", + "scipy": "1.10.1", + "setuptools": "59.6.0", + "six": "1.16.0", + "sympy": "1.13.3", + "tabulate": "0.9.0", + "timm": "1.0.9", + "tokenizers": "0.20.0", + "torch": "2.4.1", + "torch-fidelity": "0.3.0", + "torchmetrics": "1.4.2", + "torchvision": "0.19.1", + "tqdm": "4.66.5", + "transformers": "4.45.2", + "triton": "3.0.0", + "typing_extensions": "4.12.2", + "tzdata": "2024.2", + "urllib3": "2.2.3", + "wcwidth": "0.2.13", + "wheel": "0.44.0", + "zipp": "3.20.2" + } +} \ No newline at end of file diff --git a/open/MLCommons/measurements/gh_action-reference-gpu-pytorch_v2.4.1-cu124/stable-diffusion-xl/offline/user.conf b/open/MLCommons/measurements/gh_action-reference-gpu-pytorch_v2.4.1-cu124/stable-diffusion-xl/offline/user.conf new file mode 100644 index 0000000..6b964a3 --- /dev/null +++ b/open/MLCommons/measurements/gh_action-reference-gpu-pytorch_v2.4.1-cu124/stable-diffusion-xl/offline/user.conf @@ -0,0 +1,5 @@ +stable-diffusion-xl.Offline.target_qps = 0.05 +stable-diffusion-xl.Offline.max_query_count = 1 +stable-diffusion-xl.Offline.min_query_count = 1 +stable-diffusion-xl.Offline.min_duration = 0 +stable-diffusion-xl.Offline.sample_concatenate_permutation = 0 diff --git a/open/MLCommons/results/gh_action-reference-gpu-pytorch_v2.4.1-cu124/stable-diffusion-xl/offline/accuracy/accuracy.txt b/open/MLCommons/results/gh_action-reference-gpu-pytorch_v2.4.1-cu124/stable-diffusion-xl/offline/accuracy/accuracy.txt new file mode 100644 index 0000000..61867ab --- /dev/null +++ b/open/MLCommons/results/gh_action-reference-gpu-pytorch_v2.4.1-cu124/stable-diffusion-xl/offline/accuracy/accuracy.txt @@ -0,0 +1,2 @@ +Accuracy Results: {'FID_SCORE': 235.69504308101006, 'CLIP_SCORE': 15.18544016778469} +hash=52ff0ab803fb8e84330e530a1f73ff0ab9a07e7715792ead5a5a76c9d533dd3e diff --git a/open/MLCommons/results/gh_action-reference-gpu-pytorch_v2.4.1-cu124/stable-diffusion-xl/offline/accuracy/images/captions.txt b/open/MLCommons/results/gh_action-reference-gpu-pytorch_v2.4.1-cu124/stable-diffusion-xl/offline/accuracy/images/captions.txt new file mode 100644 index 0000000..102b05d --- /dev/null +++ b/open/MLCommons/results/gh_action-reference-gpu-pytorch_v2.4.1-cu124/stable-diffusion-xl/offline/accuracy/images/captions.txt @@ -0,0 +1,10 @@ +4655 Close up of a red fire hydrant near a sidewalk. +2569 A dark table has a large arrangement of food. +1303 A baby boy standing inside of a wooden crib. +109 People walking toward an airplane to board it. +4509 a couple of horses grazing on some green grass +3009 A horse that is standing with a cart near birds. +2179 A man holds up a Polish sausage on a bun. +1826 Two dogs resting comfortably on a tiled floor. +2094 A cat hiding in a basket of some sort. +3340 Vintage picture of a man and a horse on the farm. diff --git a/open/MLCommons/results/gh_action-reference-gpu-pytorch_v2.4.1-cu124/stable-diffusion-xl/offline/accuracy/mlperf_log_accuracy.json b/open/MLCommons/results/gh_action-reference-gpu-pytorch_v2.4.1-cu124/stable-diffusion-xl/offline/accuracy/mlperf_log_accuracy.json new file mode 100644 index 0000000..45ce178 --- /dev/null +++ b/open/MLCommons/results/gh_action-reference-gpu-pytorch_v2.4.1-cu124/stable-diffusion-xl/offline/accuracy/mlperf_log_accuracy.json @@ -0,0 +1,7 @@ +[ +{ "seq_id" : 0, "qsl_idx" : 25, "data" : "B4BFC8B4BFC7B4BEC7B3BDC6B3BDC6B5BFC7B5BFC7B4BEC7B5BFC8B6BFC8B6BFC8B7BFC8B6BFC9B6BFC9B5BFC8B6BEC9B6BEC9B5BDC8B6BFC9B5BFC9B5C0CAB6C1CBB9C3CDB9C2CCB7C1CCB5C0CBB7C1CCB8C2CCB8C2CCB8C2CCB9C3CCBAC3CDBAC3CCBAC3CDBCC5CDBBC5CDBBC5CCBBC4CBBEC7CDBEC6CCBDC5CCBDC5CCBFC4CBBFC4CBBFC6CCBEC6CBBEC5CBBFC5C9BDC4C9BDC5CABCC5CABAC5CAB9C5CABAC5CABCC6CBBCC6CBBCC5CCBCC5CCBDC4CCBEC5CBBDC4CCBCC5CCBCC6CCBCC6CCBEC7CCC0C7CDBFC6CCBFC6CDBFC7CEC0C8CEC2C8CEC3C9CEC3C9CEC3C8CEC4C9CFC3C9CFC4CACFC5CACEC5CACEC4CACEC5CACEC4CACEC5CACEC5CACDC6CBCEC5CACEC6CACEC5C9CDC6CBCFC6CACFC9CCD1C8CBD0C7CAD0C7CBD1C9CCD1C9CBD1CACCD1C9CCD0CACDD1CACDD0CACED1CACDD1CACDD1CACDD0CACED1CACDD1CACDD1CACDD0CACDD0CACDD1CBCDD0CACCCFCBCECFCACDCFCBCED0CACECFC9CDD0C9CDD0CACED0CACED0CBCED0CBCDD0CCCFD2CBCFD2CACED2CBCDD1CCCED2CCCED1CCCED1CACCD0CACDD0CBCDD0CACDD0CBCDD0CBCDD0CBCDD0CBCDD0CBCDD0CBCDD0CACDD0CACCD0CBCDD0CBCCD0CBCDD0CBCDD0CBCDD0CBCDD0CBCDD0CBCDD0CBCED1CBCDD0CBCDD0CBCDD1CBCDD0CBCDD0CBCDD0CACCD0CACCD0CBCDD0CACDD0CACDD0CBCDD0CBCDD0CBCDD0CBCDD1CACDD1CACCCFCCCDD0CBCCCFCBCCCECBCCD0CACCCFC9CBD0CACCD0CACBCFCBCBCECBCCCFCACCD0CACCD0C9CBCFC9CCD0C9CBCFC9CACEC9CACDCACBCFCACDCFC9CCCFCACDCFC9CBCFC9CBCFC9CBCFC9CBD0C8CBCFC8CACFCACCD0C8CBD0C8CACFC9CACFC9CBCFC8CACEC9CBCFC9CBCFC9CBCFC9CBCEC9CBCFC9CCCFC8CBCEC9CBCEC9CBCEC9CBCEC9CBCEC8CCCFC9CCCFC9CCCFC9CCCFC9CCCFC8CBCFC8CBCFC9CBCFC9CCD0C8CBD0C9CCD0C9CCD0C9CCD0C9CCD0C9CBCFC8CBD0C7CBCFC8CBD0C8CBCFC9CBD0C7CACEC8CBCFC8CBCFC7CACFC7CAD0C6CBD0C6CAD0C6CACFC5CACFC4C9CFC4C8CEC5C9CEC5CAD0C5C9D0C4C9CEC4C9CFC3C8CDC3C9CFC2C9CFC2C8CEC2C8CDC1C8CEC1C7CEC1C8CEC0C7CEC0C7CEBEC5CDBFC5CDBFC6CEBEC5CDBEC4CDBFC5CDBEC5CDBEC6CDBEC6CDBEC6CCBDC6CBBDC6CCBDC6CDBEC6CCBEC6CBBEC7CCBDC5CCBEC6CCBEC6CDBDC6CCBDC5CCBDC4CBBDC4CBBCC3CBBCC4CCBCC3CBBCC3CABCC3CBBBC2CABCC3CABCC3CABBC2C9BAC1C9BBC2C9BAC2C8BAC2C9BAC1C8BBC1C8BBC0C7BAC1C8B9C1C8B9C1C8B9C1C7BAC2C8B9C2C8BAC2C7B9C2C7B8C2C6B9C1C6B9C1C5B8C1C5B8C2C6B8C1C5B9C1C5B9C0C4B8C0C4B8C1C4B8C0C4B8C0C3B7C0C3B7C0C4B7C0C3B5BFC2B5BFC2B6BEC2B6BFC3B6BFC3B6BFC3B6BFC3B7BFC3B8BFC3B7BEC3B7BEC2B7BFC3B6BFC3B6BFC3B8C0C4B9C1C4B9C0C4B8BFC4B7BFC4B9C0C5B9C0C5B9C0C5B9BFC4B9BEC4B9BDC3B8BDC3B9BEC4B8BEC4B8BEC4B6BDC3B6BEC3B8BEC3B8BEC3B7BDC3B7BDC3B7BDC2B7BDC1B7BEC2B7BEC3B7BEC3B7BEC2B7BDC2B7BEC3B7BDC2B6BDC2B5BCC1B5BCC1B6BCC1B6BCC1B5BBC1B4BBC0B4BBBFB3BABEB3BBBFB3BABFB2BABEB1B8BDB1B8BDB0B8BDB1B7BDB1B7BDB0B6BCB1B7BDB0B6BCB0B6BCAFB6BDAEB5BCAFB6BEAFB6BDB0B7BEAFB7BDAFB7BCADB4BAAEB5BBADB5BAAEB6BCAFB7BEAEB7BEADB8BEACB7BEADB9BFACB8BEACB8BEADB8BFACB8BEACB9BFADB9C0ACB8C0ACB8BFABB7BFABB7BFA9B6BEA9B6BDA9B6BEA9B7BFA8B5BEA8B4BDA7B5BEA7B5BEA7B5BDA6B3BDA5B2BCA4B3BCA5B3BBA4B2BAA3B1BBA2B1BBA2B2BBA2B2BBA3B2BBA2B1BBA2B1BBA1B0BAA1B0B9A1B0B9A1B0BAA0AFB9A1B0BBA1B2BCA1B0BCA1AFBBA1B0BBA0AFBB9FB0BB9FAFBA9FB0BB9FB0BB9FB1BC9FB0BB9FB1BB9EB0BB9FB1BB9EB0BA9EB0BA9EB0BB9EB0BA9EB0BA9FB0BA9EAFBA9EB0BA9EAFB99EAFBA9EAFBA9FAFBA9FAFB99EAEB99FAEB8A0AFB9A0AEB89FAEB8A0AEB9A0ADB89FACB79FADB89FAEB9A0AEB9A0ADB89FADB89FADB89FACB8A0ACB99EACB89DACB99CAAB79DA9B69DAAB79CAAB79DAAB79DAAB89CA9B89BA9B99CAAB99BA9B99CA9B99DA9B89EA9B89EA9B89EA9B99DAAB99EABBA9EACBA9DACBB9CABBB9EABBB9FAABA9EAAB99DAAB99CA9B99CAAB89BAAB89AA9B89AA8B899A7B799A7B998A7B998A6B998A6B897A6B896A5B896A4B798A5B796A5B895A5B796A6B897A7B897A7B996A7B996A6B896A5B896A6B995A6B995A7B894A5B695A6B794A4B694A5B794A6B793A5B793A5B792A3B691A2B491A3B591A3B693A3B594A2B492A1B491A1B592A3B592A3B593A3B592A2B593A2B593A0B393A2B593A3B693A2B592A2B394A3B492A1B392A0B394A2B392A0B291A0B3909FB28E9DB08E9EB08E9DAF8F9DB08F9EB18D9DB28C9DB18B9BAF8E9DB18E9CB08D9CB08D9CAF8E9CB08D9CAF8E9EAF8F9EB08D9CAE8D9CAF8C9CAF8F9DB08F9BAF8F9BAF8D9BAF8E9CAF909EAF909DAF909EAF8F9DAF8E9CAF8E9DB08D9CB08E9CAF8E9CAE8E9CAD8D9AAC8D9AAE8D9AAE8D9AAE8C9AAE8C99AD8C9AAC8B9AAD8B9AAE8C9AAF8B9AAE8A99AE8999AE8999AE8B9BAE8B9AAD8B9AAD8A9AAD8A9AAD8A9AAE8A9BAE8A9AAE8B9AAD8B99AD8B9AAD8A9AAD8A9BAC8A9AAD8A9AAE8A9AAE8999AD8899AD899AAE8A99AD8999AD8898AD8797AC8998AD8898AC8898AC8797AB8998AC8997AC8796AC8697AC8697AC8597AB8597AC8697AB8597AC8496AB8296AB8397AC8396AC8396AB8296AB8095AB8396AC8394AA8394AA8294AA8194A98195A98195A98195AA8195A97F94A87F94A97F94A97F94A97F94A97E94A97F95A97F93A98194A97F93AA7E94AA7E94AA7E + +... + +FCFBFCFCFBFCFDFBFCFDFCFCFCFBFCFCFBFCFDFCFCFCFCFCFCFBFCFCFBFCFCFBFCFCFBFCFCFBFCFCFBFCFCFBFCFCFBFCFCFBFCFCFBFCFCFBFCFCFBFCFCFBFCFCFBFCFCFBFBFCFBFBFCFBFCFCFBFCFCFBFCFCFBFCFCFBFCFCFBFCFCFBFCFCFBFCFCFBFCFCFBFCFCFBFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFDFCFCFCFCFCFCFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFCFDFDFCFDFDFCFDFDFDFDFDFCFDFDFCFDFDFCFDFDFCFDFDFDFDFDFDFDFDFCFDFEFCFDFDFDFDFDFCFDFDFCFDFDFCFDFDFCFDFEFCFDFDFCFDFDFCFDFDFCFDFDFCFDFDFCFDFDFCFDFDFCFDFDFCFDFEFDFDFDFDFDFDFDFDFDFDFDFDFDFDFEFCFCFEFCFCFDFDFDFDFDFCFDFCFCFCFCFDFDFCFCFDFCFCFCFCFCFCFCFCFCFCFCFCFCFCFDFBFCFCFCFCFCFCFCFCFCFCFCFDFDFCFDFDFDFDFDFDFCFDFDFDFDFDFDFDFCFDFDFDFDFDFDFDFDFDFDFDFDFEFDFDFEFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFCFDFDFDFDFDFCFEFDFDFDFDFDFCFDFDFDFDFDFDFDFDFEFDFCFDFDFCFEFEFDFDFDFDFDFDFCFDFDFCFDFDFDFCFDFDFDFDFCFDFDFCFDFDFDFDFDFDFDFCFCFDFDFDFDFDFDFDFDFDFDFDFCFDFDFDFEFDFDFDFDFDFDFDFDFDFDFDFCFDFDFCFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFCFDFDFCFCFCFDFCFCFDFCFCFCFDFDFDFEFDFDFDFCFCFCFCFBFCFDFCFCFDFCFCFCFCFCFCFCFCFDFDFCFCFCFCFCFCFBFCFCFBFBFBFBFBFBFCFCFBFCFBFBFCFCFDFBFCFCFBFBFCFBFBFCFBFBFCFCFBFBFCFBFCFBFBFCFBFBFDFBFCFDFBFBFDFBFCFDFCFCFDFCFDFDFCFDFDFCFDFDFDFDFDFEFDFCFDFDFDFDFDFCFCFCFCFCFCFCFCFCFBFCFCFBFDFDFCFDFDFCFCFCFBFCFCFBFCFDFCFDFDFCFDFDFDFDFDFDFDFEFDFEFEFDFEFEFDFEFEFDFDFEFEFDFEFDFDFEFDFDFDFDFDFEFDFDFDFDFDFDFDFDFDFCFDFDFCFDFDFCFDFDFCFDFCFBFDFDFCFDFDFDFDFDFCFDFCFCFDFDFCFDFDFCFCFCFCFCFCFCFCFDFDFDFDFCFDFDFCFDFCFCFDFDFCFDFDFCFDFDFCFCFCFCFDFDFCFDFDFCFDFDFCFDFDFCFDFDFCFDFDFDFDFDFCFDFDFCFDFDFCFDFDFCFDFDFCFDFDFCFDFDFCFEFDFCFDFDFCFDFDFCFDFEFDFDFDFCFDFDFCFDFDFCFEFEFDFDFDFDFDFDFDFDFDFCFEFEFDFDFDFCFDFEFCFDFDFCFDFDFCFDFEFCFDFDFCFDFDFCFDFDFCFDFDFCFEFEFCFDFDFCFDFDFDFDFDFDFDFDFCFDFDFCFDFDFCFDFDFCFDFEFCFDFDFCFEFEFCFDFEFBFDFEFBFDFDFAFDFEFAFDFDF9FDFDF9FCFDF8FCFDF8FBFCF7FBFBF7FAFBF8FAFBF8FBFBF8FBFCFAFAFBFAFAFCFAFAFCFAFAFBF9FBFCF9FBFDFAFAFBF9FCFDFAFCFCFAFDFDFBFDFDFBFCFDFBFDFEFCFCFDFBFDFEFBFDFDFBFCFCFAFCFDFBFBFCFBFCFDFBFCFCFBFCFDFBFDFDFBFCFDFBFCFDFBFCFDFAFCFCFAFCFCFAFCFCFAFCFCFBFCFDFBFCFDFBFCFDFCFCFDFCFDFDFCFCFDFBFDFDFBFDFEFCFDFEFCFDFEFCFDFDFCFDFDFCFDFEFCFDFDFCFDFDFCFDFDFCFDFDFCFDFDFBFDFDFBFDFDFCFDFCFCFDFDFCFDFCFCFDFDFCFDFDFCFDFDFCFDFDFCFDFDFCFDFDFCFDFDFCFEFDFCFEFDFDFDFEFDFDFDFDFDFDFDFDFDFDFDFEFDFDFDFDFDFDFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFEFDFEFEFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFEFEFDFDFEFDFDFEFDFDFEFDFEFEFDFEFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFDFEFDFEFEFEFEFEFDFDFEFDFDFEFDFDFEFEFDFEFEFDFEFEFDFEFDFEFEFEFEFEFEFEFEFEFDFEFDFEFEFEFDFEFEFDFEFDFDFEFDFDFEFEFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFCFDFDFCFDFDFDFCFDFCFDFDFDFDFCFCFDFDFCFCFDFCFCFCFCFCFCFBFDFDFCFDFDFCFDFDFCFCFDFCFDFDFCFDFDFDFCFCFCFCFCFCFDFDFDFDFDFDFDFDFDFCFDFDFDFDFDFDFCFCFDFDFDFCFCFDFDFDFEFDFDFDFEFDFCFEFDFCFDFDFDFEFDFDFDFDFCFDFDFDFDFDFCFDFDFCFDFDFCFCFDFCFDFDFDFDFDFCFDFCFCFCFCFCFCFDFDFCFDFDFCFCFCFCFCFCFCFCFCFCFCFCFBFCFCFBFCFCFCFCFCFCFCFCFBFCFCFBFCFCFBFCFCFCFCFCFCFBFCFBFBFBFBFCFCFBFCFCFCFCFCFBFBFBFBFBFBFBFBFBFBFBFBFBFBFCFBFCFCFCFCFCFBFBFCFBFCFCFBFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFDFCFCFDFCFDFDFDFCFDFDFCFDFDFDFDFDFCFDFDFCFDFDFCFDFDFCFDFDFCFDFDFCFCFCFCFDFCFCFDFDFCFDFCFCFCFCFCFCFCFCFCFCFCFCFCFBFCFCFBFCFCFBFCFCFBFCFCFBFCFCFCFCFCFBFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFBFCFCFCFDFCFCFCFCFCFCFCFBFBFBFBFBFBFBFCFCFBFCFCFBFCFBFBFBFCFBFBFBFBFCFCFBFCFCFBFCFCFBFCFCFBFCFCFBFBFBFBFCFCFBFCFCFBFCFBFBFCFBFBFCFCFBFCFCFBFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFBFBFBFBFBFBFBFBFBFBFBFBFAFBFBFBFBFBFBFBFAFBFBFBFBFBFBFAFBFAFBFBFBFBFBFBFBFBFBFBFBFBFBFBFBFBFBFBFBFBFBFBFBFBFBFBFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFCFCFCFBFCFCFBFCFBFBFCFCFBFCFBFBFCFBFBFBFBFBFCFBFBFBFBFBFCFBFBFBFBFBFCFBFBFCFBFBFCFBFBFCFCFBFCFCFBFCFCFBFCFCFBFCFCFBFCFCFBFCFCFBFCFCFBFCFBFBFCFBFBFCFBFBFCFBFBFBFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFCFBFCFCFBFCFCFBFCFCFBFCFCFBFCFCFBFCFCFBFCFCFBFCFCFBFCFCFBFCFBFBFCFCFBFCFBFBFCFBFBFCFBFBFCFBFBFCFBFBFCFCFBFCFCFBFCFBFBFCFBFBFCFBFBFCFCFBFCFCFBFCFBFBFCFCFBFCFCFBFCFCFBFCFCFCFCFCFBFCFCFBFCFBFBFCFBFBFCFBFCFCFCFBFCFBFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFBFCFBFCFCFCFCFCFCFBFCFCFBFBFBFBFCFCFBFCFCFCFCFCFBFCFCFBFCFCFBFCFCFBFCFCFBFCFCFBFBFBFBFBFBFBFBFBFCFCFCFAFBFBFCFDFD" } +] diff --git a/open/MLCommons/results/gh_action-reference-gpu-pytorch_v2.4.1-cu124/stable-diffusion-xl/offline/accuracy/mlperf_log_detail.txt b/open/MLCommons/results/gh_action-reference-gpu-pytorch_v2.4.1-cu124/stable-diffusion-xl/offline/accuracy/mlperf_log_detail.txt new file mode 100644 index 0000000..862f5e7 --- /dev/null +++ b/open/MLCommons/results/gh_action-reference-gpu-pytorch_v2.4.1-cu124/stable-diffusion-xl/offline/accuracy/mlperf_log_detail.txt @@ -0,0 +1,70 @@ +:::MLLOG {"key": "loadgen_version", "value": "4.1 @ f5c8f17583", "time_ms": 0.002810, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "version.cc", "line_no": 53, "pid": 6847, "tid": 6847}} +:::MLLOG {"key": "loadgen_build_date_local", "value": "2024-10-10T03:01:09.823276", "time_ms": 0.002810, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "version.cc", "line_no": 55, "pid": 6847, "tid": 6847}} +:::MLLOG {"key": "loadgen_build_date_utc", "value": "2024-10-10T03:01:09.823284", "time_ms": 0.002810, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "version.cc", "line_no": 56, "pid": 6847, "tid": 6847}} +:::MLLOG {"key": "loadgen_git_commit_date", "value": "2024-10-08T18:30:16+01:00", "time_ms": 0.002810, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "version.cc", "line_no": 57, "pid": 6847, "tid": 6847}} +:::MLLOG {"key": "loadgen_git_log_message", "value": "f5c8f1758374aeaba26b2e84d31690111cfdf054 Fix bug: Loadgen ignoring token latency targets in user conf (#1874)\n976bb1ad9c7946be79507f3ff67955c27426af52 Set correct remote repo (#1871)\n41fa8aadd1ba0ecc97f6a519d8b42b04278e5f24 Add format files github action (#1682)\n518b454fd8647bfbd23a074e875e87353f33393e Tflite tpu (#1449)\ne0fdec1c7a75c98cfc194f13d62ac4388d419c8a Fix link in GettingStarted.ipynb (#1512)", "time_ms": 0.002810, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "version.cc", "line_no": 58, "pid": 6847, "tid": 6847}} +:::MLLOG {"key": "loadgen_git_status_message", "value": "", "time_ms": 0.002810, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "version.cc", "line_no": 60, "pid": 6847, "tid": 6847}} +:::MLLOG {"key": "loadgen_file_sha1", "value": {"/.clang-format":"012aad77e5206c89d50718c46c119d1f3cb056b2","/CMakeLists.txt":"d5274ff0b56e8d3cdb273174628a4461fca6f02a","/README.md":"20a55bb946c2c0bbb564ced2af1e48efd096b3a8","/README_BUILD.md":"5f6c6a784e9cd6995db47f9b9f70b1769909c9d8","/README_FAQ.md":"01f9ae9887f50bc030dc6107e740f40c43ca388f","/bindings/c_api.cc":"32181da9e161c285f8fe46ddaa49e6cba2f9f918","/bindings/c_api.h":"91f58bd79b83b278f3240174a9af747fc38aff74","/bindings/python_api.cc":"ea4c89decad19eaf3217bfa2fb757d3b83a561d6","/diagram_network_submission.png":"53dba8ad4272190ceb6335c12fd25e53dc02a8cb","/diagram_submission.png":"84c2f79309b237cef652aef6a187ba8e875a3952","/early_stopping.cc":"0cd7b546a389deac73f7955cd39255ed76557d62","/early_stopping.h":"158fcae6a5f47e82150d6416fa1f7bcef37e77fe","/issue_query_controller.cc":"126e952d00f4ea9efd12405fb209aa3ed585e4b2","/issue_query_controller.h":"923d9d5cdf598e3ec33d7a1110a31f7e11527ec7","/loadgen.cc":"6650091ba7a918f343b06eb7a5aa540eae87275f","/loadgen.h":"e00fdc6dbc85a8c9a8485dbcbfe2944f81251c4e","/loadgen_integration_diagram.svg":"47f748307536f80cfc606947b440dd732afc2637","/logging.cc":"197efc96d178e5d33a750d07fa7b2966417506ea","/logging.h":"ddb961df7bcc145bcd7cce8c21f7cf075350dcbe","/pyproject.toml":"ca17720f9c8246e821331946d893e830fc88f8bd","/query_dispatch_library.h":"13ad6d842200cb161d6927eb74a3fafd79c46c75","/query_sample.h":"e9187c8612bbdc972305b789feb6e15c26e96cfe","/query_sample_library.h":"8323a2225be1dff31f08ecc86b76eb3de06568bc","/requirements.txt":"a5ff7e77caa6e9e22ada90f0de0c865c987bf167","/results.cc":"34e2d2a44324cb07c884f92146ecbb8ef9d704e2","/results.h":"d82500c326c2de83db411f1146882aa4692b419c","/setup.py":"13c49b028b22749b5f3c44f3d9bb489e8c0574e9","/system_under_test.h":"18d4809589dae33317d88d9beeb5491a6e1ccdec","/test_settings.h":"c15c3e150030089a8d634bd2ad6d4b644002e613","/test_settings_internal.cc":"e21febd60f9b5bedd1fc81bb990f09c34b32043c","/test_settings_internal.h":"f1d5335b53ca610c30e0edc5d07999a27b5b4b9a","/utils.cc":"3df8fdabf6eaea4697cf25d1dcb89cae88e36efd","/utils.h":"40775e32d619ea6356826ae5ea4174c7911f6894","/version.cc":"cbec2a5f98f9786c8c3d8b06b3d12df0b6550fa0","/version.h":"9d574baa64424e9c708fcfedd3dbb0b518a65fcc","/version_generator.py":"eea9b9cb1a06cd1abe1bbdaee82f9af31527fedb"}, "time_ms": 0.002810, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "version.cc", "line_no": 67, "pid": 6847, "tid": 6847}} +:::MLLOG {"key": "test_datetime", "value": "2024-10-10T03:05:58Z", "time_ms": 0.011079, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "loadgen.cc", "line_no": 1198, "pid": 6847, "tid": 6847}} +:::MLLOG {"key": "sut_name", "value": "PySUT", "time_ms": 0.011079, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "loadgen.cc", "line_no": 1199, "pid": 6847, "tid": 6847}} +:::MLLOG {"key": "get_sut_name_duration_ns", "value": 196, "time_ms": 0.011079, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "loadgen.cc", "line_no": 1200, "pid": 6847, "tid": 6847}} +:::MLLOG {"key": "qsl_name", "value": "PyQSL", "time_ms": 0.011079, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "loadgen.cc", "line_no": 1201, "pid": 6847, "tid": 6847}} +:::MLLOG {"key": "qsl_reported_total_count", "value": 50, "time_ms": 0.011079, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "loadgen.cc", "line_no": 1202, "pid": 6847, "tid": 6847}} +:::MLLOG {"key": "qsl_reported_performance_count", "value": 5000, "time_ms": 0.011079, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "loadgen.cc", "line_no": 1203, "pid": 6847, "tid": 6847}} +:::MLLOG {"key": "requested_scenario", "value": "Offline", "time_ms": 0.013675, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "test_settings_internal.cc", "line_no": 270, "pid": 6847, "tid": 6847}} +:::MLLOG {"key": "requested_test_mode", "value": "AccuracyOnly", "time_ms": 0.013675, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "test_settings_internal.cc", "line_no": 271, "pid": 6847, "tid": 6847}} +:::MLLOG {"key": "requested_offline_expected_qps", "value": 0.05, "time_ms": 0.013675, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "test_settings_internal.cc", "line_no": 308, "pid": 6847, "tid": 6847}} +:::MLLOG {"key": "requested_min_duration_ms", "value": 0, "time_ms": 0.013675, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "test_settings_internal.cc", "line_no": 314, "pid": 6847, "tid": 6847}} +:::MLLOG {"key": "requested_max_duration_ms", "value": 0, "time_ms": 0.013675, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "test_settings_internal.cc", "line_no": 315, "pid": 6847, "tid": 6847}} +:::MLLOG {"key": "requested_min_query_count", "value": 50, "time_ms": 0.013675, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "test_settings_internal.cc", "line_no": 316, "pid": 6847, "tid": 6847}} +:::MLLOG {"key": "requested_max_query_count", "value": 50, "time_ms": 0.013675, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "test_settings_internal.cc", "line_no": 317, "pid": 6847, "tid": 6847}} +:::MLLOG {"key": "requested_qsl_rng_seed", "value": 3066443479025735752, "time_ms": 0.013675, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "test_settings_internal.cc", "line_no": 318, "pid": 6847, "tid": 6847}} +:::MLLOG {"key": "requested_sample_index_rng_seed", "value": 10688027786191513374, "time_ms": 0.013675, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "test_settings_internal.cc", "line_no": 319, "pid": 6847, "tid": 6847}} +:::MLLOG {"key": "requested_schedule_rng_seed", "value": 14962580496156340209, "time_ms": 0.013675, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "test_settings_internal.cc", "line_no": 321, "pid": 6847, "tid": 6847}} +:::MLLOG {"key": "requested_accuracy_log_rng_seed", "value": 0, "time_ms": 0.013675, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "test_settings_internal.cc", "line_no": 322, "pid": 6847, "tid": 6847}} +:::MLLOG {"key": "requested_accuracy_log_probability", "value": 0, "time_ms": 0.013675, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "test_settings_internal.cc", "line_no": 324, "pid": 6847, "tid": 6847}} +:::MLLOG {"key": "requested_accuracy_log_sampling_target", "value": 0, "time_ms": 0.013675, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "test_settings_internal.cc", "line_no": 326, "pid": 6847, "tid": 6847}} +:::MLLOG {"key": "requested_print_timestamps", "value": false, "time_ms": 0.013675, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "test_settings_internal.cc", "line_no": 328, "pid": 6847, "tid": 6847}} +:::MLLOG {"key": "requested_performance_issue_unique", "value": false, "time_ms": 0.013675, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "test_settings_internal.cc", "line_no": 329, "pid": 6847, "tid": 6847}} +:::MLLOG {"key": "requested_performance_issue_same", "value": false, "time_ms": 0.013675, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "test_settings_internal.cc", "line_no": 331, "pid": 6847, "tid": 6847}} +:::MLLOG {"key": "requested_performance_issue_same_index", "value": 0, "time_ms": 0.013675, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "test_settings_internal.cc", "line_no": 333, "pid": 6847, "tid": 6847}} +:::MLLOG {"key": "requested_performance_sample_count_override", "value": 5000, "time_ms": 0.013675, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "test_settings_internal.cc", "line_no": 335, "pid": 6847, "tid": 6847}} +:::MLLOG {"key": "requested_sample_concatenate_permutation", "value": false, "time_ms": 0.013675, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "test_settings_internal.cc", "line_no": 337, "pid": 6847, "tid": 6847}} +:::MLLOG {"key": "effective_scenario", "value": "Offline", "time_ms": 0.013771, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "test_settings_internal.cc", "line_no": 413, "pid": 6847, "tid": 6847}} +:::MLLOG {"key": "effective_test_mode", "value": "AccuracyOnly", "time_ms": 0.013771, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "test_settings_internal.cc", "line_no": 414, "pid": 6847, "tid": 6847}} +:::MLLOG {"key": "effective_samples_per_query", "value": 50, "time_ms": 0.013771, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "test_settings_internal.cc", "line_no": 416, "pid": 6847, "tid": 6847}} +:::MLLOG {"key": "effective_target_qps", "value": 0.05, "time_ms": 0.013771, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "test_settings_internal.cc", "line_no": 417, "pid": 6847, "tid": 6847}} +:::MLLOG {"key": "effective_target_latency_ns", "value": 0, "time_ms": 0.013771, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "test_settings_internal.cc", "line_no": 418, "pid": 6847, "tid": 6847}} +:::MLLOG {"key": "effective_target_latency_percentile", "value": 0.99, "time_ms": 0.013771, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "test_settings_internal.cc", "line_no": 419, "pid": 6847, "tid": 6847}} +:::MLLOG {"key": "effective_max_async_queries", "value": 1, "time_ms": 0.013771, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "test_settings_internal.cc", "line_no": 421, "pid": 6847, "tid": 6847}} +:::MLLOG {"key": "effective_target_duration_ms", "value": 0, "time_ms": 0.013771, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "test_settings_internal.cc", "line_no": 422, "pid": 6847, "tid": 6847}} +:::MLLOG {"key": "effective_min_duration_ms", "value": 0, "time_ms": 0.013771, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "test_settings_internal.cc", "line_no": 424, "pid": 6847, "tid": 6847}} +:::MLLOG {"key": "effective_max_duration_ms", "value": 0, "time_ms": 0.013771, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "test_settings_internal.cc", "line_no": 425, "pid": 6847, "tid": 6847}} +:::MLLOG {"key": "effective_min_query_count", "value": 1, "time_ms": 0.013771, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "test_settings_internal.cc", "line_no": 426, "pid": 6847, "tid": 6847}} +:::MLLOG {"key": "effective_max_query_count", "value": 50, "time_ms": 0.013771, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "test_settings_internal.cc", "line_no": 427, "pid": 6847, "tid": 6847}} +:::MLLOG {"key": "effective_min_sample_count", "value": 50, "time_ms": 0.013771, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "test_settings_internal.cc", "line_no": 428, "pid": 6847, "tid": 6847}} +:::MLLOG {"key": "effective_qsl_rng_seed", "value": 3066443479025735752, "time_ms": 0.013771, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "test_settings_internal.cc", "line_no": 429, "pid": 6847, "tid": 6847}} +:::MLLOG {"key": "effective_sample_index_rng_seed", "value": 10688027786191513374, "time_ms": 0.013771, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "test_settings_internal.cc", "line_no": 430, "pid": 6847, "tid": 6847}} +:::MLLOG {"key": "effective_schedule_rng_seed", "value": 14962580496156340209, "time_ms": 0.013771, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "test_settings_internal.cc", "line_no": 432, "pid": 6847, "tid": 6847}} +:::MLLOG {"key": "effective_accuracy_log_rng_seed", "value": 0, "time_ms": 0.013771, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "test_settings_internal.cc", "line_no": 433, "pid": 6847, "tid": 6847}} +:::MLLOG {"key": "effective_accuracy_log_probability", "value": 0, "time_ms": 0.013771, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "test_settings_internal.cc", "line_no": 435, "pid": 6847, "tid": 6847}} +:::MLLOG {"key": "effective_accuracy_log_sampling_target", "value": 0, "time_ms": 0.013771, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "test_settings_internal.cc", "line_no": 437, "pid": 6847, "tid": 6847}} +:::MLLOG {"key": "effective_print_timestamps", "value": false, "time_ms": 0.013771, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "test_settings_internal.cc", "line_no": 439, "pid": 6847, "tid": 6847}} +:::MLLOG {"key": "effective_performance_issue_unique", "value": false, "time_ms": 0.013771, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "test_settings_internal.cc", "line_no": 440, "pid": 6847, "tid": 6847}} +:::MLLOG {"key": "effective_performance_issue_same", "value": false, "time_ms": 0.013771, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "test_settings_internal.cc", "line_no": 442, "pid": 6847, "tid": 6847}} +:::MLLOG {"key": "effective_performance_issue_same_index", "value": 0, "time_ms": 0.013771, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "test_settings_internal.cc", "line_no": 444, "pid": 6847, "tid": 6847}} +:::MLLOG {"key": "effective_performance_sample_count", "value": 5000, "time_ms": 0.013771, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "test_settings_internal.cc", "line_no": 446, "pid": 6847, "tid": 6847}} +:::MLLOG {"key": "effective_sample_concatenate_permutation", "value": false, "time_ms": 0.013771, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "test_settings_internal.cc", "line_no": 448, "pid": 6847, "tid": 6847}} +:::MLLOG {"key": "generic_message", "value": "Starting accuracy mode", "time_ms": 0.021329, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "loadgen.cc", "line_no": 1090, "pid": 6847, "tid": 6847}} +:::MLLOG {"key": "loaded_qsl_set", "value": [25,24,46,36,21,22,39,13,45,4,32,40,33,23,10,44,34,15,28,29,3,30,1,47,26,31,16,8,2,0,49,27,48,5,17,19,20,18,43,9,14,6,35,7,12,37,11,38,42,41], "time_ms": 0.028562, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "loadgen.cc", "line_no": 613, "pid": 6847, "tid": 6847}} +:::MLLOG {"key": "generated_query_count", "value": 1, "time_ms": 1.974283, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "loadgen.cc", "line_no": 428, "pid": 6847, "tid": 6847}} +:::MLLOG {"key": "generated_samples_per_query", "value": 50, "time_ms": 1.974283, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "loadgen.cc", "line_no": 429, "pid": 6847, "tid": 6847}} +:::MLLOG {"key": "generated_query_duration", "value": 20000000000, "time_ms": 1.974283, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "loadgen.cc", "line_no": 430, "pid": 6847, "tid": 6847}} +:::MLLOG {"key": "logger_swap_request_slots_retry_count", "value": 0, "time_ms": 132577.671336, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "logging.cc", "line_no": 898, "pid": 6847, "tid": 6847}} +:::MLLOG {"key": "logger_swap_request_slots_retry_retry_count", "value": 0, "time_ms": 132577.671336, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "logging.cc", "line_no": 900, "pid": 6847, "tid": 6847}} +:::MLLOG {"key": "logger_swap_request_slots_retry_reencounter_count", "value": 0, "time_ms": 132577.671336, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "logging.cc", "line_no": 902, "pid": 6847, "tid": 6847}} +:::MLLOG {"key": "logger_start_reading_entries_retry_count", "value": 0, "time_ms": 132577.671336, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "logging.cc", "line_no": 904, "pid": 6847, "tid": 6847}} +:::MLLOG {"key": "logger_tls_total_log_cas_fail_count", "value": 0, "time_ms": 132577.671336, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "logging.cc", "line_no": 906, "pid": 6847, "tid": 6847}} +:::MLLOG {"key": "logger_tls_total_swap_buffers_slot_retry_count", "value": 0, "time_ms": 132577.671336, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "logging.cc", "line_no": 908, "pid": 6847, "tid": 6847}} +:::MLLOG {"key": "power_begin", "value": "10-10-2024 03:05:58.759", "time_ms": 132577.674230, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "loadgen.cc", "line_no": 564, "pid": 6847, "tid": 6847}} +:::MLLOG {"key": "power_end", "value": "10-10-2024 03:08:11.319", "time_ms": 132577.674230, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "loadgen.cc", "line_no": 566, "pid": 6847, "tid": 6847}} diff --git a/open/MLCommons/results/gh_action-reference-gpu-pytorch_v2.4.1-cu124/stable-diffusion-xl/offline/accuracy/mlperf_log_summary.txt b/open/MLCommons/results/gh_action-reference-gpu-pytorch_v2.4.1-cu124/stable-diffusion-xl/offline/accuracy/mlperf_log_summary.txt new file mode 100644 index 0000000..a05d865 --- /dev/null +++ b/open/MLCommons/results/gh_action-reference-gpu-pytorch_v2.4.1-cu124/stable-diffusion-xl/offline/accuracy/mlperf_log_summary.txt @@ -0,0 +1,4 @@ + +No warnings encountered during test. + +No errors encountered during test. diff --git a/open/MLCommons/results/gh_action-reference-gpu-pytorch_v2.4.1-cu124/stable-diffusion-xl/offline/performance/run_1/mlperf_log_accuracy.json b/open/MLCommons/results/gh_action-reference-gpu-pytorch_v2.4.1-cu124/stable-diffusion-xl/offline/performance/run_1/mlperf_log_accuracy.json new file mode 100644 index 0000000..0d4f101 --- /dev/null +++ b/open/MLCommons/results/gh_action-reference-gpu-pytorch_v2.4.1-cu124/stable-diffusion-xl/offline/performance/run_1/mlperf_log_accuracy.json @@ -0,0 +1,2 @@ +[ +] diff --git a/open/MLCommons/results/gh_action-reference-gpu-pytorch_v2.4.1-cu124/stable-diffusion-xl/offline/performance/run_1/mlperf_log_detail.txt b/open/MLCommons/results/gh_action-reference-gpu-pytorch_v2.4.1-cu124/stable-diffusion-xl/offline/performance/run_1/mlperf_log_detail.txt new file mode 100644 index 0000000..8c825d0 --- /dev/null +++ b/open/MLCommons/results/gh_action-reference-gpu-pytorch_v2.4.1-cu124/stable-diffusion-xl/offline/performance/run_1/mlperf_log_detail.txt @@ -0,0 +1,87 @@ +:::MLLOG {"key": "loadgen_version", "value": "4.1 @ f5c8f17583", "time_ms": 0.006907, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "version.cc", "line_no": 53, "pid": 3361, "tid": 3361}} +:::MLLOG {"key": "loadgen_build_date_local", "value": "2024-10-10T03:01:09.823276", "time_ms": 0.006907, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "version.cc", "line_no": 55, "pid": 3361, "tid": 3361}} +:::MLLOG {"key": "loadgen_build_date_utc", "value": "2024-10-10T03:01:09.823284", "time_ms": 0.006907, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "version.cc", "line_no": 56, "pid": 3361, "tid": 3361}} +:::MLLOG {"key": "loadgen_git_commit_date", "value": "2024-10-08T18:30:16+01:00", "time_ms": 0.006907, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "version.cc", "line_no": 57, "pid": 3361, "tid": 3361}} +:::MLLOG {"key": "loadgen_git_log_message", "value": "f5c8f1758374aeaba26b2e84d31690111cfdf054 Fix bug: Loadgen ignoring token latency targets in user conf (#1874)\n976bb1ad9c7946be79507f3ff67955c27426af52 Set correct remote repo (#1871)\n41fa8aadd1ba0ecc97f6a519d8b42b04278e5f24 Add format files github action (#1682)\n518b454fd8647bfbd23a074e875e87353f33393e Tflite tpu (#1449)\ne0fdec1c7a75c98cfc194f13d62ac4388d419c8a Fix link in GettingStarted.ipynb (#1512)", "time_ms": 0.006907, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "version.cc", "line_no": 58, "pid": 3361, "tid": 3361}} +:::MLLOG {"key": "loadgen_git_status_message", "value": "", "time_ms": 0.006907, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "version.cc", "line_no": 60, "pid": 3361, "tid": 3361}} +:::MLLOG {"key": "loadgen_file_sha1", "value": {"/.clang-format":"012aad77e5206c89d50718c46c119d1f3cb056b2","/CMakeLists.txt":"d5274ff0b56e8d3cdb273174628a4461fca6f02a","/README.md":"20a55bb946c2c0bbb564ced2af1e48efd096b3a8","/README_BUILD.md":"5f6c6a784e9cd6995db47f9b9f70b1769909c9d8","/README_FAQ.md":"01f9ae9887f50bc030dc6107e740f40c43ca388f","/bindings/c_api.cc":"32181da9e161c285f8fe46ddaa49e6cba2f9f918","/bindings/c_api.h":"91f58bd79b83b278f3240174a9af747fc38aff74","/bindings/python_api.cc":"ea4c89decad19eaf3217bfa2fb757d3b83a561d6","/diagram_network_submission.png":"53dba8ad4272190ceb6335c12fd25e53dc02a8cb","/diagram_submission.png":"84c2f79309b237cef652aef6a187ba8e875a3952","/early_stopping.cc":"0cd7b546a389deac73f7955cd39255ed76557d62","/early_stopping.h":"158fcae6a5f47e82150d6416fa1f7bcef37e77fe","/issue_query_controller.cc":"126e952d00f4ea9efd12405fb209aa3ed585e4b2","/issue_query_controller.h":"923d9d5cdf598e3ec33d7a1110a31f7e11527ec7","/loadgen.cc":"6650091ba7a918f343b06eb7a5aa540eae87275f","/loadgen.h":"e00fdc6dbc85a8c9a8485dbcbfe2944f81251c4e","/loadgen_integration_diagram.svg":"47f748307536f80cfc606947b440dd732afc2637","/logging.cc":"197efc96d178e5d33a750d07fa7b2966417506ea","/logging.h":"ddb961df7bcc145bcd7cce8c21f7cf075350dcbe","/pyproject.toml":"ca17720f9c8246e821331946d893e830fc88f8bd","/query_dispatch_library.h":"13ad6d842200cb161d6927eb74a3fafd79c46c75","/query_sample.h":"e9187c8612bbdc972305b789feb6e15c26e96cfe","/query_sample_library.h":"8323a2225be1dff31f08ecc86b76eb3de06568bc","/requirements.txt":"a5ff7e77caa6e9e22ada90f0de0c865c987bf167","/results.cc":"34e2d2a44324cb07c884f92146ecbb8ef9d704e2","/results.h":"d82500c326c2de83db411f1146882aa4692b419c","/setup.py":"13c49b028b22749b5f3c44f3d9bb489e8c0574e9","/system_under_test.h":"18d4809589dae33317d88d9beeb5491a6e1ccdec","/test_settings.h":"c15c3e150030089a8d634bd2ad6d4b644002e613","/test_settings_internal.cc":"e21febd60f9b5bedd1fc81bb990f09c34b32043c","/test_settings_internal.h":"f1d5335b53ca610c30e0edc5d07999a27b5b4b9a","/utils.cc":"3df8fdabf6eaea4697cf25d1dcb89cae88e36efd","/utils.h":"40775e32d619ea6356826ae5ea4174c7911f6894","/version.cc":"cbec2a5f98f9786c8c3d8b06b3d12df0b6550fa0","/version.h":"9d574baa64424e9c708fcfedd3dbb0b518a65fcc","/version_generator.py":"eea9b9cb1a06cd1abe1bbdaee82f9af31527fedb"}, "time_ms": 0.006907, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "version.cc", "line_no": 67, "pid": 3361, "tid": 3361}} +:::MLLOG {"key": "test_datetime", "value": "2024-10-10T03:05:21Z", "time_ms": 0.042683, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "loadgen.cc", "line_no": 1198, "pid": 3361, "tid": 3361}} +:::MLLOG {"key": "sut_name", "value": "PySUT", "time_ms": 0.042683, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "loadgen.cc", "line_no": 1199, "pid": 3361, "tid": 3361}} +:::MLLOG {"key": "get_sut_name_duration_ns", "value": 425, "time_ms": 0.042683, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "loadgen.cc", "line_no": 1200, "pid": 3361, "tid": 3361}} +:::MLLOG {"key": "qsl_name", "value": "PyQSL", "time_ms": 0.042683, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "loadgen.cc", "line_no": 1201, "pid": 3361, "tid": 3361}} +:::MLLOG {"key": "qsl_reported_total_count", "value": 50, "time_ms": 0.042683, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "loadgen.cc", "line_no": 1202, "pid": 3361, "tid": 3361}} +:::MLLOG {"key": "qsl_reported_performance_count", "value": 5000, "time_ms": 0.042683, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "loadgen.cc", "line_no": 1203, "pid": 3361, "tid": 3361}} +:::MLLOG {"key": "requested_scenario", "value": "Offline", "time_ms": 0.055103, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "test_settings_internal.cc", "line_no": 270, "pid": 3361, "tid": 3361}} +:::MLLOG {"key": "requested_test_mode", "value": "PerformanceOnly", "time_ms": 0.055103, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "test_settings_internal.cc", "line_no": 271, "pid": 3361, "tid": 3361}} +:::MLLOG {"key": "requested_offline_expected_qps", "value": 0.05, "time_ms": 0.055103, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "test_settings_internal.cc", "line_no": 308, "pid": 3361, "tid": 3361}} +:::MLLOG {"key": "requested_min_duration_ms", "value": 0, "time_ms": 0.055103, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "test_settings_internal.cc", "line_no": 314, "pid": 3361, "tid": 3361}} +:::MLLOG {"key": "requested_max_duration_ms", "value": 0, "time_ms": 0.055103, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "test_settings_internal.cc", "line_no": 315, "pid": 3361, "tid": 3361}} +:::MLLOG {"key": "requested_min_query_count", "value": 1, "time_ms": 0.055103, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "test_settings_internal.cc", "line_no": 316, "pid": 3361, "tid": 3361}} +:::MLLOG {"key": "requested_max_query_count", "value": 1, "time_ms": 0.055103, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "test_settings_internal.cc", "line_no": 317, "pid": 3361, "tid": 3361}} +:::MLLOG {"key": "requested_qsl_rng_seed", "value": 3066443479025735752, "time_ms": 0.055103, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "test_settings_internal.cc", "line_no": 318, "pid": 3361, "tid": 3361}} +:::MLLOG {"key": "requested_sample_index_rng_seed", "value": 10688027786191513374, "time_ms": 0.055103, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "test_settings_internal.cc", "line_no": 319, "pid": 3361, "tid": 3361}} +:::MLLOG {"key": "requested_schedule_rng_seed", "value": 14962580496156340209, "time_ms": 0.055103, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "test_settings_internal.cc", "line_no": 321, "pid": 3361, "tid": 3361}} +:::MLLOG {"key": "requested_accuracy_log_rng_seed", "value": 0, "time_ms": 0.055103, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "test_settings_internal.cc", "line_no": 322, "pid": 3361, "tid": 3361}} +:::MLLOG {"key": "requested_accuracy_log_probability", "value": 0, "time_ms": 0.055103, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "test_settings_internal.cc", "line_no": 324, "pid": 3361, "tid": 3361}} +:::MLLOG {"key": "requested_accuracy_log_sampling_target", "value": 0, "time_ms": 0.055103, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "test_settings_internal.cc", "line_no": 326, "pid": 3361, "tid": 3361}} +:::MLLOG {"key": "requested_print_timestamps", "value": false, "time_ms": 0.055103, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "test_settings_internal.cc", "line_no": 328, "pid": 3361, "tid": 3361}} +:::MLLOG {"key": "requested_performance_issue_unique", "value": false, "time_ms": 0.055103, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "test_settings_internal.cc", "line_no": 329, "pid": 3361, "tid": 3361}} +:::MLLOG {"key": "requested_performance_issue_same", "value": false, "time_ms": 0.055103, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "test_settings_internal.cc", "line_no": 331, "pid": 3361, "tid": 3361}} +:::MLLOG {"key": "requested_performance_issue_same_index", "value": 0, "time_ms": 0.055103, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "test_settings_internal.cc", "line_no": 333, "pid": 3361, "tid": 3361}} +:::MLLOG {"key": "requested_performance_sample_count_override", "value": 5000, "time_ms": 0.055103, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "test_settings_internal.cc", "line_no": 335, "pid": 3361, "tid": 3361}} +:::MLLOG {"key": "requested_sample_concatenate_permutation", "value": false, "time_ms": 0.055103, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "test_settings_internal.cc", "line_no": 337, "pid": 3361, "tid": 3361}} +:::MLLOG {"key": "effective_scenario", "value": "Offline", "time_ms": 0.055613, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "test_settings_internal.cc", "line_no": 413, "pid": 3361, "tid": 3361}} +:::MLLOG {"key": "effective_test_mode", "value": "PerformanceOnly", "time_ms": 0.055613, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "test_settings_internal.cc", "line_no": 414, "pid": 3361, "tid": 3361}} +:::MLLOG {"key": "effective_samples_per_query", "value": 1, "time_ms": 0.055613, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "test_settings_internal.cc", "line_no": 416, "pid": 3361, "tid": 3361}} +:::MLLOG {"key": "effective_target_qps", "value": 0.05, "time_ms": 0.055613, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "test_settings_internal.cc", "line_no": 417, "pid": 3361, "tid": 3361}} +:::MLLOG {"key": "effective_target_latency_ns", "value": 0, "time_ms": 0.055613, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "test_settings_internal.cc", "line_no": 418, "pid": 3361, "tid": 3361}} +:::MLLOG {"key": "effective_target_latency_percentile", "value": 0.99, "time_ms": 0.055613, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "test_settings_internal.cc", "line_no": 419, "pid": 3361, "tid": 3361}} +:::MLLOG {"key": "effective_max_async_queries", "value": 1, "time_ms": 0.055613, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "test_settings_internal.cc", "line_no": 421, "pid": 3361, "tid": 3361}} +:::MLLOG {"key": "effective_target_duration_ms", "value": 0, "time_ms": 0.055613, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "test_settings_internal.cc", "line_no": 422, "pid": 3361, "tid": 3361}} +:::MLLOG {"key": "effective_min_duration_ms", "value": 0, "time_ms": 0.055613, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "test_settings_internal.cc", "line_no": 424, "pid": 3361, "tid": 3361}} +:::MLLOG {"key": "effective_max_duration_ms", "value": 0, "time_ms": 0.055613, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "test_settings_internal.cc", "line_no": 425, "pid": 3361, "tid": 3361}} +:::MLLOG {"key": "effective_min_query_count", "value": 1, "time_ms": 0.055613, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "test_settings_internal.cc", "line_no": 426, "pid": 3361, "tid": 3361}} +:::MLLOG {"key": "effective_max_query_count", "value": 1, "time_ms": 0.055613, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "test_settings_internal.cc", "line_no": 427, "pid": 3361, "tid": 3361}} +:::MLLOG {"key": "effective_min_sample_count", "value": 1, "time_ms": 0.055613, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "test_settings_internal.cc", "line_no": 428, "pid": 3361, "tid": 3361}} +:::MLLOG {"key": "effective_qsl_rng_seed", "value": 3066443479025735752, "time_ms": 0.055613, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "test_settings_internal.cc", "line_no": 429, "pid": 3361, "tid": 3361}} +:::MLLOG {"key": "effective_sample_index_rng_seed", "value": 10688027786191513374, "time_ms": 0.055613, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "test_settings_internal.cc", "line_no": 430, "pid": 3361, "tid": 3361}} +:::MLLOG {"key": "effective_schedule_rng_seed", "value": 14962580496156340209, "time_ms": 0.055613, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "test_settings_internal.cc", "line_no": 432, "pid": 3361, "tid": 3361}} +:::MLLOG {"key": "effective_accuracy_log_rng_seed", "value": 0, "time_ms": 0.055613, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "test_settings_internal.cc", "line_no": 433, "pid": 3361, "tid": 3361}} +:::MLLOG {"key": "effective_accuracy_log_probability", "value": 0, "time_ms": 0.055613, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "test_settings_internal.cc", "line_no": 435, "pid": 3361, "tid": 3361}} +:::MLLOG {"key": "effective_accuracy_log_sampling_target", "value": 0, "time_ms": 0.055613, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "test_settings_internal.cc", "line_no": 437, "pid": 3361, "tid": 3361}} +:::MLLOG {"key": "effective_print_timestamps", "value": false, "time_ms": 0.055613, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "test_settings_internal.cc", "line_no": 439, "pid": 3361, "tid": 3361}} +:::MLLOG {"key": "effective_performance_issue_unique", "value": false, "time_ms": 0.055613, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "test_settings_internal.cc", "line_no": 440, "pid": 3361, "tid": 3361}} +:::MLLOG {"key": "effective_performance_issue_same", "value": false, "time_ms": 0.055613, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "test_settings_internal.cc", "line_no": 442, "pid": 3361, "tid": 3361}} +:::MLLOG {"key": "effective_performance_issue_same_index", "value": 0, "time_ms": 0.055613, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "test_settings_internal.cc", "line_no": 444, "pid": 3361, "tid": 3361}} +:::MLLOG {"key": "effective_performance_sample_count", "value": 5000, "time_ms": 0.055613, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "test_settings_internal.cc", "line_no": 446, "pid": 3361, "tid": 3361}} +:::MLLOG {"key": "effective_sample_concatenate_permutation", "value": false, "time_ms": 0.055613, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "test_settings_internal.cc", "line_no": 448, "pid": 3361, "tid": 3361}} +:::MLLOG {"key": "generic_message", "value": "Starting performance mode", "time_ms": 0.064005, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "loadgen.cc", "line_no": 841, "pid": 3361, "tid": 3361}} +:::MLLOG {"key": "loaded_qsl_set", "value": [25,24,46,36,21,22,39,13,45,4,32,40,33,23,10,44,34,15,28,29,3,30,1,47,26,31,16,8,2,0,49,27,48,5,17,19,20,18,43,9,14,6,35,7,12,37,11,38,42,41], "time_ms": 0.090594, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "loadgen.cc", "line_no": 613, "pid": 3361, "tid": 3361}} +:::MLLOG {"key": "generated_query_count", "value": 1, "time_ms": 2.645703, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "loadgen.cc", "line_no": 428, "pid": 3361, "tid": 3361}} +:::MLLOG {"key": "generated_samples_per_query", "value": 1, "time_ms": 2.645703, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "loadgen.cc", "line_no": 429, "pid": 3361, "tid": 3361}} +:::MLLOG {"key": "generated_query_duration", "value": 20000000000, "time_ms": 2.645703, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "loadgen.cc", "line_no": 430, "pid": 3361, "tid": 3361}} +:::MLLOG {"key": "generic_message", "value": "Ending naturally: Minimum query count and test duration met.", "time_ms": 2.675819, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "issue_query_controller.cc", "line_no": 482, "pid": 3361, "tid": 3361}} +:::MLLOG {"key": "logger_swap_request_slots_retry_count", "value": 0, "time_ms": 2903.669560, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "logging.cc", "line_no": 898, "pid": 3361, "tid": 3361}} +:::MLLOG {"key": "logger_swap_request_slots_retry_retry_count", "value": 0, "time_ms": 2903.669560, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "logging.cc", "line_no": 900, "pid": 3361, "tid": 3361}} +:::MLLOG {"key": "logger_swap_request_slots_retry_reencounter_count", "value": 0, "time_ms": 2903.669560, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "logging.cc", "line_no": 902, "pid": 3361, "tid": 3361}} +:::MLLOG {"key": "logger_start_reading_entries_retry_count", "value": 0, "time_ms": 2903.669560, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "logging.cc", "line_no": 904, "pid": 3361, "tid": 3361}} +:::MLLOG {"key": "logger_tls_total_log_cas_fail_count", "value": 0, "time_ms": 2903.669560, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "logging.cc", "line_no": 906, "pid": 3361, "tid": 3361}} +:::MLLOG {"key": "logger_tls_total_swap_buffers_slot_retry_count", "value": 0, "time_ms": 2903.669560, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "logging.cc", "line_no": 908, "pid": 3361, "tid": 3361}} +:::MLLOG {"key": "power_begin", "value": "10-10-2024 03:05:21.630", "time_ms": 2903.672200, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "loadgen.cc", "line_no": 564, "pid": 3361, "tid": 3361}} +:::MLLOG {"key": "power_end", "value": "10-10-2024 03:05:24.522", "time_ms": 2903.672200, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "loadgen.cc", "line_no": 566, "pid": 3361, "tid": 3361}} +:::MLLOG {"key": "result_validity", "value": "VALID", "time_ms": 2903.716531, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "results.cc", "line_no": 655, "pid": 3361, "tid": 3361}} +:::MLLOG {"key": "result_min_duration_met", "value": true, "time_ms": 2903.716531, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "results.cc", "line_no": 660, "pid": 3361, "tid": 3361}} +:::MLLOG {"key": "result_min_queries_met", "value": true, "time_ms": 2903.716531, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "results.cc", "line_no": 661, "pid": 3361, "tid": 3361}} +:::MLLOG {"key": "early_stopping_met", "value": true, "time_ms": 2903.716531, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "results.cc", "line_no": 662, "pid": 3361, "tid": 3361}} +:::MLLOG {"key": "early_stopping_result", "value": "", "time_ms": 2903.716531, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "results.cc", "line_no": 682, "pid": 3361, "tid": 3361}} +:::MLLOG {"key": "result_query_count", "value": 1, "time_ms": 2903.716531, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "results.cc", "line_no": 692, "pid": 3361, "tid": 3361}} +:::MLLOG {"key": "result_samples_per_second", "value": 0.345763, "time_ms": 2903.716531, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "results.cc", "line_no": 748, "pid": 3361, "tid": 3361}} +:::MLLOG {"key": "result_min_latency_ns", "value": 2892154500, "time_ms": 2903.716531, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "results.cc", "line_no": 754, "pid": 3361, "tid": 3361}} +:::MLLOG {"key": "result_max_latency_ns", "value": 2892154500, "time_ms": 2903.716531, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "results.cc", "line_no": 755, "pid": 3361, "tid": 3361}} +:::MLLOG {"key": "result_mean_latency_ns", "value": 2892154500, "time_ms": 2903.716531, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "results.cc", "line_no": 756, "pid": 3361, "tid": 3361}} +:::MLLOG {"key": "result_50.00_percentile_latency_ns", "value": 2892154500, "time_ms": 2903.716531, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "results.cc", "line_no": 758, "pid": 3361, "tid": 3361}} +:::MLLOG {"key": "result_90.00_percentile_latency_ns", "value": 2892154500, "time_ms": 2903.716531, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "results.cc", "line_no": 758, "pid": 3361, "tid": 3361}} +:::MLLOG {"key": "result_95.00_percentile_latency_ns", "value": 2892154500, "time_ms": 2903.716531, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "results.cc", "line_no": 758, "pid": 3361, "tid": 3361}} +:::MLLOG {"key": "result_97.00_percentile_latency_ns", "value": 2892154500, "time_ms": 2903.716531, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "results.cc", "line_no": 758, "pid": 3361, "tid": 3361}} +:::MLLOG {"key": "result_99.00_percentile_latency_ns", "value": 2892154500, "time_ms": 2903.716531, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "results.cc", "line_no": 758, "pid": 3361, "tid": 3361}} +:::MLLOG {"key": "result_99.90_percentile_latency_ns", "value": 2892154500, "time_ms": 2903.716531, "namespace": "mlperf::logging", "event_type": "POINT_IN_TIME", "metadata": {"is_error": false, "is_warning": false, "file": "results.cc", "line_no": 758, "pid": 3361, "tid": 3361}} diff --git a/open/MLCommons/results/gh_action-reference-gpu-pytorch_v2.4.1-cu124/stable-diffusion-xl/offline/performance/run_1/mlperf_log_summary.txt b/open/MLCommons/results/gh_action-reference-gpu-pytorch_v2.4.1-cu124/stable-diffusion-xl/offline/performance/run_1/mlperf_log_summary.txt new file mode 100644 index 0000000..82ad8c3 --- /dev/null +++ b/open/MLCommons/results/gh_action-reference-gpu-pytorch_v2.4.1-cu124/stable-diffusion-xl/offline/performance/run_1/mlperf_log_summary.txt @@ -0,0 +1,51 @@ +================================================ +MLPerf Results Summary +================================================ +SUT name : PySUT +Scenario : Offline +Mode : PerformanceOnly +Samples per second: 0.345763 +Result is : VALID + Min duration satisfied : Yes + Min queries satisfied : Yes + Early stopping satisfied: Yes + +================================================ +Additional Stats +================================================ +Min latency (ns) : 2892154500 +Max latency (ns) : 2892154500 +Mean latency (ns) : 2892154500 +50.00 percentile latency (ns) : 2892154500 +90.00 percentile latency (ns) : 2892154500 +95.00 percentile latency (ns) : 2892154500 +97.00 percentile latency (ns) : 2892154500 +99.00 percentile latency (ns) : 2892154500 +99.90 percentile latency (ns) : 2892154500 + +================================================ +Test Parameters Used +================================================ +samples_per_query : 1 +target_qps : 0.05 +target_latency (ns): 0 +max_async_queries : 1 +min_duration (ms): 0 +max_duration (ms): 0 +min_query_count : 1 +max_query_count : 1 +qsl_rng_seed : 3066443479025735752 +sample_index_rng_seed : 10688027786191513374 +schedule_rng_seed : 14962580496156340209 +accuracy_log_rng_seed : 0 +accuracy_log_probability : 0 +accuracy_log_sampling_target : 0 +print_timestamps : 0 +performance_issue_unique : 0 +performance_issue_same : 0 +performance_issue_same_index : 0 +performance_sample_count : 5000 + +No warnings encountered during test. + +No errors encountered during test. diff --git a/open/MLCommons/systems/gh_action-reference-gpu-pytorch_v2.4.1-cu124.json b/open/MLCommons/systems/gh_action-reference-gpu-pytorch_v2.4.1-cu124.json new file mode 100644 index 0000000..18d0290 --- /dev/null +++ b/open/MLCommons/systems/gh_action-reference-gpu-pytorch_v2.4.1-cu124.json @@ -0,0 +1,37 @@ +{ + "accelerator_frequency": "2520000 MHz", + "accelerator_host_interconnect": "N/A", + "accelerator_interconnect": "N/A", + "accelerator_interconnect_topology": "", + "accelerator_memory_capacity": "23.64703369140625 GB", + "accelerator_memory_configuration": "N/A", + "accelerator_model_name": "NVIDIA GeForce RTX 4090", + "accelerator_on-chip_memories": "", + "accelerators_per_node": 2, + "cooling": "air", + "division": "open", + "framework": "pytorch v2.4.1", + "host_memory_capacity": "192G", + "host_memory_configuration": "undefined", + "host_network_card_count": "1", + "host_networking": "Gig Ethernet", + "host_networking_topology": "N/A", + "host_processor_caches": "L1d cache: 1.1 MiB (24 instances), L1i cache: 768 KiB (24 instances), L2 cache: 48 MiB (24 instances), L3 cache: 45 MiB (1 instance)", + "host_processor_core_count": "24", + "host_processor_frequency": "4800.0000", + "host_processor_interconnect": "", + "host_processor_model_name": "Intel(R) Xeon(R) w7-2495X", + "host_processors_per_node": "1", + "host_storage_capacity": "6.9T", + "host_storage_type": "SSD", + "hw_notes": "", + "number_of_nodes": "1", + "operating_system": "Ubuntu 22.04 (linux-6.2.0-39-generic-glibc2.35)", + "other_software_stack": "Python: 3.10.12, GCC-11.4.0", + "status": "available", + "submitter": "MLCommons", + "sw_notes": "Automated by MLCommons CM v2.3.9. ", + "system_name": "gh_action", + "system_type": "edge", + "system_type_detail": "edge server" +} \ No newline at end of file