diff --git a/src/pypromice/process/resample.py b/src/pypromice/process/resample.py index 3fde1b71..2280901e 100644 --- a/src/pypromice/process/resample.py +++ b/src/pypromice/process/resample.py @@ -32,8 +32,22 @@ def resample_dataset(ds_h, t): ds_d : xarray.Dataset L3 AWS dataset resampled to the frequency defined by t ''' - df_d = ds_h.to_dataframe().resample(t).mean() + # Convert dataset to DataFrame + df_d = ds_h.to_dataframe() + # Identify non-numeric columns + non_numeric_cols = df_d.select_dtypes(exclude=['number']).columns + + # Log a warning and drop non-numeric columns + if len(non_numeric_cols) > 0: + for col in non_numeric_cols: + unique_values = df_d[col].unique() + logger.warning(f"Dropping column '{col}' because it is of type '{df_d[col].dtype}' and contains unique values: {unique_values}") + + df_d = df_d.drop(columns=non_numeric_cols) + # Resample the DataFrame + df_d = df_d.resample(t).mean() + # taking the 10 min data and using it as instantaneous values: is_10_minutes_timestamp = (ds_h.time.diff(dim='time') / np.timedelta64(1, 's') == 600) if (t == '60min') and is_10_minutes_timestamp.any():