-
Notifications
You must be signed in to change notification settings - Fork 29
/
multiple_shotting_todo.py
212 lines (177 loc) · 5.49 KB
/
multiple_shotting_todo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
"""
author: Geesara Prathap
email: [email protected]
license: BSD
"""
import numpy as np
from quadcopter import QuadCopter
from casadi import *
import casadi as ca
# Time horizon
T = 0.2
N = 20 # number of control intervals
robot_diam = 1.3
v_max = 0.2
v_min = -v_max
omega_max = ca.pi/4
omega_min = -omega_max
map_dim = [-100, 100, -100, 100, 0, 100]
xs = ca.DM([[5.8], [6], [4.0], [0.0]])
Q = ca.DM.zeros(4,4)
Q[0,0] = 1
Q[1,1] = 1
Q[2,2] = 1
Q[3,3] = 0.1
R = ca.DM.zeros(4,4)
R[0,0] = 0.5
R[1,1] = 0.5
R[2,2] = 0.5
R[3,3] = 0.05
obs_map = np.array([[-2.5, 1.5, 2, 2],[3.5, 5, 3, 2]])
obs_length = obs_map.shape[0]
# Declare model variables
x_ = ca.SX.sym('x')
y_ = ca.SX.sym('y')
z_ = ca.SX.sym('z')
theta = ca.SX.sym('theta')
x = ca.vertcat(x_, y_, z_, theta)
n_states = x.size()[0]
v_x = ca.SX.sym('v_x')
v_y = ca.SX.sym('v_y')
v_z = ca.SX.sym('v_z')
omega = ca.SX.sym('omega')
u = ca.vertcat(v_x, v_y, v_z, omega)
n_controls = u.size()[0]
# Model equations
xdot = ca.vertcat(v_x*ca.cos(theta)-v_y*ca.sin(theta), v_y*ca.cos(theta) + v_x*ca.sin(theta), v_z, omega)
x0_ = ca.DM([[0], [0], [0], [0]])
P = ca.SX.sym('P', n_states + n_states)
L = ca.mtimes((x-P[n_states:n_states*2]).T, ca.mtimes(Q,(x-P[n_states:n_states*2]))) + ca.mtimes(u.T, ca.mtimes(R, u))
f = ca.Function('f', [x, u, P], [xdot, L], ['x', 'u', 'p'], ['xdot', 'L'])
# Start with an empty NLP
w=[]
w0 = []
lbw = []
ubw = []
J = 1
g=[]
lbg = []
ubg = []
U = SX.sym('U', n_controls, N)
X = SX.sym('X', n_states, N+1)
g += [X[:,0] - P[0:n_states]]
lbg += [0, 0, 0, 0]
ubg += [0, 0, 0, 0]
ibj = 1
# Formulate the NLP
for k in range(N):
# New NLP variable for the control
Uk = U[:,k]
Xk = X[:,k]
# Integrate till the end of the interval
x_dot_, l = f(Xk, Uk, P)
Xk_end = x_dot_*T
J=J+l
st_next_euler = Xk + Xk_end
# New NLP variable for state at end of interval
Xk = X[:,k+1]
# TODO Add equality constraints
g +=
lbg += [0, 0, 0, 0]
ubg += [0, 0, 0, 0]
ibj += 1
obs_count = 0
for k in range(0, N+1):
st = X[:,k]
for obs in obs_map:
# TODO Add inequality constraints
obs_cost =
g += [obs_cost]
lbg += [-inf]
ubg += [0]
OPT_variables = vertcat(reshape(X, n_states*(N+1), 1), reshape(U, n_controls*N, 1))
# Create an NLP solver
opts = {}
opts["expand"] = True
opts["ipopt.max_iter"] = 100
opts["ipopt.tol"] = 1e-4
opts["ipopt.print_level"] = 0
opts["print_time"] = 0
opts["ipopt.acceptable_tol"] = 1e-8
prob = {'f': J, 'x': OPT_variables, 'g': vertcat(*g), 'p':P}
solver = nlpsol('solver', 'ipopt', prob, opts)
P_ = ca.vertcat(x0_, xs)
lbx = DM(n_states*(N+1)+n_controls*N,1)
ubx = DM(n_states*(N+1)+n_controls*N,1)
lbx[0:n_states*(N+1):n_states,0] = map_dim[0]
ubx[0:n_states*(N+1):n_states,0] = map_dim[1]
lbx[1:n_states*(N+1):n_states,0] = map_dim[2]
ubx[1:n_states*(N+1):n_states,0] = map_dim[3]
lbx[2:n_states*(N+1):n_states,0] = map_dim[4]
ubx[2:n_states*(N+1):n_states,0] = map_dim[5]
lbx[3:n_states*(N+1):n_states,0] = -inf
ubx[3:n_states*(N+1):n_states,0] = inf
lbx[n_states*(N+1):n_states*(N+1) + n_controls*N:n_controls,0] = v_min
ubx[n_states*(N+1):n_states*(N+1) + n_controls*N:n_controls,0] = v_max
lbx[n_states*(N+1)+1:n_states*(N+1) + n_controls*N:n_controls,0] = v_min
ubx[n_states*(N+1)+1:n_states*(N+1) + n_controls*N:n_controls,0] = v_max
lbx[n_states*(N+1)+2:n_states*(N+1) + n_controls*N:n_controls,0] = v_min
ubx[n_states*(N+1)+2:n_states*(N+1) + n_controls*N:n_controls,0] = v_max
lbx[n_states*(N+1)+1:n_states*(N+1) +n_controls*N:2,0] = omega_min
ubx[n_states*(N+1)+1:n_states*(N+1) +n_controls*N:2,0] = omega_max
t0 = 0
x0 = DM([[-5], [-5], [0], [0]])
xx = DM(n_states, 300)
xx[:,0] = x0
t = DM(1, 300)
t[0] = t0
u0 = DM.zeros(N, n_controls)
X0 = repmat(x0, 1, N+1).T
def shift(T, t0, x0, u, P, f):
st = x0
con = u[0,:].T
x_dot_, _ = f(st, con, P)
st = st + (T*x_dot_)
x0 = st
t0 = t0 + T
u_rest = u[1:u.size()[0]:1,:]
u_last = u[u.size()[0]-1:u.size()[0]:1,:]
u0 = vertcat(u_rest, u_last)
return t0, x0, u0
args = {'lbx':lbx, 'ubx':ubx, 'lbg':lbg
, 'ubg':ubg, 'p':[], 'x0':[0.5, 1.0]}
w0 = vertcat(reshape(X0.T, n_states*(N+1), 1), reshape(u0.T, n_controls*N, 1))
sim_time = 40
mpciter = 0
prediction_horizon_poses = []
u_cl = []
current_state = []
while(norm_2(x0-xs)>1e-2 and mpciter < sim_time/T):
args['p'] = vertcat(x0, xs)
args['x0'] = vertcat(reshape(X0.T, n_states*(N+1), 1), reshape(u0.T, n_controls*N, 1))
sol = solver(**args)
u = reshape(sol['x'][n_states*(N+1):sol['x'].size()[0]:1].T, n_controls, N).T
horizon_poses = reshape(sol['x'][0:n_states*(N+1):1].T, n_states, N+1).T.full()
prediction_horizon_poses.append(horizon_poses)
u_cl.append(u.full())
t[mpciter+1] = t0
t0, x0, u0 = shift(T, t0, x0, u, args['p'], f)
X0 = reshape(sol['x'][0:n_states*(N+1)].T, n_states, N+1).T
xx[:,mpciter+2] = x0
current_state.append(x0.full().flatten())
X0 = reshape(sol['x'][0:n_states*(N+1):1].T, n_states, N+1).T
x0_rest = X0[1:X0.size()[0]:1,:]
x0_last = X0[X0.size()[0]-1:X0.size()[0]:1,:]
X0 = vertcat(x0_rest, x0_last)
mpciter = mpciter + 1
animation_frequency = 50
control_frequency = 200 # Hz for attitude control loop
control_iterations = control_frequency / animation_frequency
dt = 1.0 / control_frequency
time = [0.0]
df = np.array(current_state)
quadcopter = QuadCopter()
def control_loop(i):
state = np.array(df[i])
return quadcopter.world_frame(np.append(state, 0), prediction_horizon_poses[i])
quadcopter.plot_quad_3d(control_loop, obs_map)