forked from kenshohara/3D-ResNets-PyTorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
81 lines (67 loc) · 2.39 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
import torch
from torch.autograd import Variable
import time
import os
import sys
from utils import AverageMeter, calculate_accuracy
def train_epoch(epoch, data_loader, model, criterion, optimizer, opt,
epoch_logger, batch_logger):
print('train at epoch {}'.format(epoch))
model.train()
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
accuracies = AverageMeter()
end_time = time.time()
for i, (inputs, targets) in enumerate(data_loader):
data_time.update(time.time() - end_time)
if not opt.no_cuda:
targets = targets.cuda(async=True)
inputs = Variable(inputs)
targets = Variable(targets)
outputs = model(inputs)
loss = criterion(outputs, targets)
acc = calculate_accuracy(outputs, targets)
losses.update(loss.data[0], inputs.size(0))
accuracies.update(acc, inputs.size(0))
optimizer.zero_grad()
loss.backward()
optimizer.step()
batch_time.update(time.time() - end_time)
end_time = time.time()
batch_logger.log({
'epoch': epoch,
'batch': i + 1,
'iter': (epoch - 1) * len(data_loader) + (i + 1),
'loss': losses.val,
'acc': accuracies.val,
'lr': optimizer.param_groups[0]['lr']
})
print('Epoch: [{0}][{1}/{2}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Acc {acc.val:.3f} ({acc.avg:.3f})'.format(
epoch,
i + 1,
len(data_loader),
batch_time=batch_time,
data_time=data_time,
loss=losses,
acc=accuracies))
epoch_logger.log({
'epoch': epoch,
'loss': losses.avg,
'acc': accuracies.avg,
'lr': optimizer.param_groups[0]['lr']
})
if epoch % opt.checkpoint == 0:
save_file_path = os.path.join(opt.result_path,
'save_{}.pth'.format(epoch))
states = {
'epoch': epoch + 1,
'arch': opt.arch,
'state_dict': model.state_dict(),
'optimizer': optimizer.state_dict(),
}
torch.save(states, save_file_path)