-
Notifications
You must be signed in to change notification settings - Fork 5
/
detect_dnn.py
88 lines (72 loc) · 3.08 KB
/
detect_dnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
import cv2
import numpy as np
import time
import matplotlib.pyplot as plt
returnlist = []
trashlist = [0,0,0,0,0]
count = 0
classes = ['cardboard/paper','glass','metal','plastic','trash']
def trashfunc():
net = cv2.dnn.readNet("p2_30000.weights", "p2.cfg")
layer_names = cv2.net.getLayerNames()
output_layers = [layer_names[i[0] - 1] for i in cv2.net.getUnconnectedOutLayers()]
colors = np.random.uniform(0, 255, size=(len(classes), 3))
cap = cv2.VideoCapture(0)
while(True):
if count == 20:
count = 0
break
ret, frame = cap.read()
if cv2.waitKey(1) == ord('q'):
break
if(ret):
cv2.imshow("Image", frame)
height, width, channels = frame.shape
blob = cv2.dnn.blobFromImage(frame, 0.00392, (416, 416), (0, 0, 0), True, crop=False)
cv2.net.setInput(blob)
outs = cv2.net.forward(output_layers)
class_ids = []
confidences = []
boxes = []
for out in outs:
for detection in out:
scores = detection[5:]
class_id = np.argmax(scores)
confidence = scores[class_id]
if confidence > 0.1:
# Object detected
center_x = int(detection[0] * width)
center_y = int(detection[1] * height)
w = int(detection[2] * width)
h = int(detection[3] * height)
# Rectangle coordinates
x = int(center_x - w / 2)
y = int(center_y - h / 2)
boxes.append([x, y, w, h])
confidences.append(float(confidence))
class_ids.append(class_id)
indexes = cv2.dnn.NMSBoxes(boxes, confidences, 0.1, 0.4)
font = cv2.FONT_HERSHEY_PLAIN
for i in range(len(boxes)):
if i in indexes:
x, y, w, h = boxes[i]
label = str(classes[class_ids[i]])
color = colors[i]
cv2.rectangle(frame, (x, y), (x + w, y + h), color, 2)
cv2.putText(frame, label, (x, y - 10), font, 1, color, 2)
print(label, confidences[i], x, y, w, h)
cv2.imshow("detect", frame)
if label == classes[0]:
trashlist[0] = trashlist[0] + 1
elif label == classes[1]:
trashlist[1] = trashlist[1] + 1
elif label == classes[2]:
trashlist[2] = trashlist[2] + 1
elif label == classes[3]:
trashlist[3] = trashlist[3] + 1
elif label == classes[4]:
trashlist[4] = trashlist[4] + 1
count = count + 1
cap.release()
cv2.destroyAllWindows()
return trashlist