-
Notifications
You must be signed in to change notification settings - Fork 3
/
qde.py
383 lines (317 loc) · 18.4 KB
/
qde.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
"""This module contains functions that solve differential equations by transforming them to QUBO problems, which allows solution on quantum annealer."""
import greedy
import numpy as np
import qpsolvers
from dwave.system.composites import EmbeddingComposite
from dwave.system.samplers import DWaveSampler
from dwave_qbsolv import QBSolv
from utils_general import print_progress_bar
class QUBOSampler:
"""Base class for implementations of QUBO sampling approaches."""
def sample_qubo(self, Q, label=''):
"""Returns a sample set of found binary vectors that minimizes QUBO functional.
Args:
Q (numpy.ndarray): QUBO minimization matrix.
label (str): Optional sampling job label.
Returns:
sample_set (dimod.SampleSet): Sample set of found binary vectors that minimizes QUBO functional.
"""
raise NotImplementedError("Not implemented in base class")
class QBSolvWrapper(QUBOSampler):
"""Uses classical QBSolv sampling algorithm (probabilistic heuristic)."""
def __init__(self, num_repeats):
"""Initializes instance.
Args:
num_repeats (int): Number of times to repeat sampling procedure in attempt to find a better solution.
"""
self.num_repeats = num_repeats
def sample_qubo(self, Q, label=''):
"""See base class."""
sample_set = QBSolv().sample_qubo(Q, label=label, num_repeats=self.num_repeats)
# sample_set = greedy.SteepestDescentSolver().sample_qubo(Q, initial_states=sample_set)
# sample_set = greedy.SteepestDescentSolver().sample_qubo(Q)
return sample_set
class DWaveSamplerWrapper(QUBOSampler):
"""Uses D-Wave quantum annealer for sampling."""
def __init__(self, num_reads, use_greedy):
"""Initializes instance.
Args:
num_reads (int): Number of times ground state of qubits is read.
use_greedy (bool): Whether to use classical greedy algorithm to improve sampling results.
"""
self.num_reads = num_reads
self.use_greedy = use_greedy
self.sampler = EmbeddingComposite(DWaveSampler())
# self.sampler = EmbeddingComposite(DWaveSampler(annealing_time=200))
def sample_qubo(self, Q, label=''):
"""See base class."""
# sample_set = self.sampler.sample_qubo(Q, label=label)
sample_set = self.sampler.sample_qubo(Q, label=label, num_reads=self.num_reads)
# sample_set = self.sampler.sample_qubo(Q, label=label, num_reads=self.num_reads, chain_strength=0.3 * np.max(abs(Q)))
# print('\nPercentage of samples with high rates of breaks (> 0.10) is ', np.count_nonzero(sample_set.record.chain_break_fraction > 0.10) / self.num_reads * 100)
if self.use_greedy:
sample_set = greedy.SteepestDescentSolver().sample_qubo(Q, initial_states=sample_set)
return sample_set
class Solver:
"""Base class for quadratic minimization solvers."""
def solve(self, H, d, job_label=''):
"""Finds solution of quadratic minimization problem.
Args:
H (numpy.ndarray): Quadratic minimization matrix.
d (numpy.ndarray): Quadratic minimization vector.
job_label (str): Optional job label.
Returns:
solution (numpy.ndarray): 1D array that minimizes QP functional.
"""
raise NotImplementedError("Not implemented in base class")
class QPSolver(Solver):
"""Solves quadratic minimization problem with real variables."""
def solve(self, H, d, job_label=''):
"""See base class."""
solution = qpsolvers.solve_qp(2 * H, d)
return solution
class QUBOSolver(Solver):
"""Solves quadratic minimization problem with binary variables."""
def __init__(self, bits_integer, bits_decimal, sampler):
"""Initializes instance.
Args:
bits_integer (int): Number of binary variables used to represent integer part of a given real number.
bits_decimal (int): Number of binary variables used to represent decimal part of a given real number.
sampler (QUBOSampler): Sampler to use for QUBO sampling.
"""
self.bits_integer = bits_integer
self.bits_decimal = bits_decimal
self.bits_total = bits_integer + bits_decimal
self.sampler = sampler
def get_discretization_matrix(self):
"""Builds the discretization matrix for given number of bits in integer and decimal parts.
Returns:
numpy.ndarray: Discretization matrix.
"""
j_range = range(-self.bits_integer + 1, self.bits_decimal + 1)
return np.reshape([2 ** -(j1 + j2) for j1 in j_range for j2 in j_range], (len(j_range), len(j_range)))
def get_discretization_vector(self):
"""Builds the discretization vector for given number of bits in integer and decimal parts.
Returns:
numpy.ndarray: Discretization vector.
"""
j_range = range(-self.bits_integer + 1, self.bits_decimal + 1)
return np.array([2 ** -j for j in j_range])
def real_to_bits(self, num):
"""Returns the closest binary representation of a given real number.
Args:
num (float): Number to convert.
Returns:
bits (numpy.ndarray): 1D array of bits.
"""
bits = np.zeros(self.bits_total, dtype=int)
represented = -2 ** (self.bits_integer - 1)
min_step = 2 ** -self.bits_decimal
for i in range(len(bits)):
bit_value = 2 ** (self.bits_integer - 1 - i)
if represented + bit_value - min_step / 2 <= num:
bits[i] = 1
represented += bit_value
return bits
def bits_to_real(self, bits):
"""Returns a real number represented by given binary representation.
Args:
bits (numpy.ndarray): 1D array of bits.
Returns:
num: Represented real number.
"""
discretization_vector = self.get_discretization_vector()
return np.dot(bits, discretization_vector) - 2 ** (self.bits_integer - 1)
def convert_qp_matrices_to_qubo(self, H, d):
"""Converts QP matrices to QUBO representation with given number of bits for integer and decimal parts.
Args:
H (numpy.ndarray): Quadratic minimization matrix.
d (numpy.ndarray): Quadratic minimization vector.
Returns:
Q (numpy.ndarray): Equivalent QUBO matrix.
energy_shift (float): Additional energy shift for QUBO formulation.
"""
discretization_matrix = self.get_discretization_matrix()
discretization_vector = self.get_discretization_vector()
block_size = len(discretization_vector)
Q_size = block_size * len(d)
Q = np.zeros((Q_size, Q_size))
for i in range(H.shape[0]):
for j in range(i, H.shape[1]):
coeff = H[i, j] if i == j else 2 * H[i, j]
Q[i * block_size: (i + 1) * block_size, j * block_size: (j + 1) * block_size] += coeff * discretization_matrix
Q[range(i * block_size, (i + 1) * block_size), range(i * block_size, (i + 1) * block_size)] -= 2 ** (self.bits_integer - 1) * coeff * discretization_vector
Q[range(j * block_size, (j + 1) * block_size), range(j * block_size, (j + 1) * block_size)] -= 2 ** (self.bits_integer - 1) * coeff * discretization_vector
if i == j:
Q[range(i * block_size, (i + 1) * block_size), range(i * block_size, (i + 1) * block_size)] += d[i] * discretization_vector
energy_shift = 4 ** (self.bits_integer - 1) * np.sum(H) - 2 ** (self.bits_integer - 1) * np.sum(d)
return Q, energy_shift
def solve(self, H, d, job_label=''):
"""See base class."""
Q = self.convert_qp_matrices_to_qubo(H, d)[0]
sample_set = self.sampler.sample_qubo(Q, label=job_label)
samples_plain = np.array([list(sample.values()) for sample in sample_set]) # 2D, each row - solution_real (all bits together), sorted by energy
solution_bits = samples_plain[0, :]
solution_bits_shaped = np.reshape(solution_bits, (H.shape[0], self.bits_total))
solution_real = np.array([self.bits_to_real(bits_row) for bits_row in solution_bits_shaped])
return solution_real
def add_symmetric(H, ind1, ind2, value):
"""Splits specified value between the two off-diagonals of H.
Args:
H (numpy.ndarray): Matrix to which value is added.
ind1 (int): first index of position in H where value is added.
ind2 (int): second index of position in H where value is added.
value (float): value to add.
"""
H[ind1, ind2] += value / 2
H[ind2, ind1] += value / 2
def add_point_terms_qp(H, d, point_ind, eq_ind_start, eq_ind_end, funcs_i, dx, known_points=None):
"""Adds functional terms for a given point to H and d.
Args:
H (numpy.ndarray): Current quadratic minimization matrix to which quadratic terms of specified point are added.
d (numpy.ndarray): Current quadratic minimization vector to which linear terms of specified point are added.
point_ind (int): Local point index within the current job.
eq_ind_start (int): Index of the first considered equation.
eq_ind_end (int): Index of the last considered equation (exclusive).
funcs_i (numpy.ndarray): 2D array with values of approximated rhs terms at the current point. Equations are along rows, terms along columns.
dx (float): Grid step.
known_points (numpy.ndarray): When adding terms for the last known point, this is 1D array of the values of each function at that point, otherwise not needed.
Returns:
energy_shift (float): Constant part of minimization functional.
"""
energy_shift = 0
get_unknown_ind = lambda point, eq: (point - 1) * (eq_ind_end - eq_ind_start) + (eq - eq_ind_start)
for eq_ind in range(eq_ind_start, eq_ind_end):
next_unknown_ind = get_unknown_ind(point_ind + 1, eq_ind)
H[next_unknown_ind, next_unknown_ind] += 1 / dx ** 2
d[next_unknown_ind] += -2 * funcs_i[eq_ind, 0] / dx
energy_shift += funcs_i[eq_ind, 0] ** 2
if point_ind == 0:
# Current point is known
assert known_points is not None, 'known_points have to be supplied for 0th point in each job'
d[next_unknown_ind] += -2 * known_points[eq_ind] / dx ** 2
energy_shift += (known_points[eq_ind] / dx) ** 2
energy_shift += 2 * known_points[eq_ind] * funcs_i[eq_ind, 0] / dx
for term_ind in range(1, funcs_i.shape[1]):
d[next_unknown_ind] += -2 * funcs_i[eq_ind, term_ind] * known_points[term_ind - 1] / dx
energy_shift += 2 * funcs_i[eq_ind, term_ind] * known_points[term_ind - 1] * known_points[eq_ind] / dx
energy_shift += 2 * funcs_i[eq_ind, 0] * funcs_i[eq_ind, term_ind] * known_points[term_ind - 1]
for term_ind2 in range(1, funcs_i.shape[1]):
energy_shift += funcs_i[eq_ind, term_ind] * funcs_i[eq_ind, term_ind2] * known_points[term_ind - 1] * known_points[term_ind2 - 1]
else:
unknown_ind = get_unknown_ind(point_ind, eq_ind)
add_symmetric(H, unknown_ind, next_unknown_ind, -2 / dx ** 2)
H[unknown_ind, unknown_ind] += 1 / dx ** 2
d[unknown_ind] += 2 * funcs_i[eq_ind, 0] / dx
for term_ind in range(1, funcs_i.shape[1]):
term_unknown_ind = get_unknown_ind(point_ind, term_ind - 1)
add_symmetric(H, term_unknown_ind, next_unknown_ind, -2 * funcs_i[eq_ind, term_ind] / dx)
add_symmetric(H, term_unknown_ind, unknown_ind, 2 * funcs_i[eq_ind, term_ind] / dx)
d[term_unknown_ind] += 2 * funcs_i[eq_ind, 0] * funcs_i[eq_ind, term_ind]
for term_ind2 in range(1, funcs_i.shape[1]):
term_unknown_ind2 = get_unknown_ind(point_ind, term_ind2 - 1)
add_symmetric(H, term_unknown_ind, term_unknown_ind2, funcs_i[eq_ind, term_ind] * funcs_i[eq_ind, term_ind2])
return energy_shift
def build_qp_matrices(funcs, dx, known_points, eq_ind_start, eq_ind_end):
"""Builds matrices H and d that define quadratic minimization problem corresponding to a given system of differential equations.
Args:
funcs (numpy.ndarray): 3D array with values of approximated rhs terms at all points of this job. 1st dim - equations, 2nd dim - terms, 3rd dim - points.
dx (float): Grid step.
known_points (numpy.ndarray): 1D array of known points for each function at 0th point (boundary condition).
eq_ind_start (int): Index of the first considered equation.
eq_ind_end (int): Index of the last considered equation (exclusive).
Returns:
H (numpy.ndarray): Quadratic minimization matrix.
d (numpy.ndarray): Quadratic minimization vector.
energy_shift (float): Constant part of minimization functional.
"""
unknowns = (eq_ind_end - eq_ind_start) * funcs.shape[2]
H = np.zeros((unknowns, unknowns))
d = np.zeros(unknowns)
energy_shift = 0
for point_ind in range(funcs.shape[2]):
energy_shift += add_point_terms_qp(H, d, point_ind, eq_ind_start, eq_ind_end, funcs[:, :, point_ind], dx, known_points)
return H, d, energy_shift
def calculate_term_coefficients(system_terms, approximation_point, sampling_steps, grid):
"""Linearly approximates system rhs in the vicinity of a given point.
Args:
system_terms (numpy.ndarray): 1D array of functions that define rhs of each ODE in the system. Each function is linearly approximated within a given job.
approximation_point (numpy.ndarray): 1D array that specifies coordinate around which linear approximation is made.
sampling_steps (numpy.ndarray): 1D array of steps along each coordinate where additional points are sampled for linear fitting.
grid (numpy.ndarray): 1D array of x values for which the system terms are evaluated.
Returns:
funcs (numpy.ndarray): 3D array with values of approximated rhs terms at all points of this job. 1st dim - equations, 2nd dim - terms, 3rd dim - points.
"""
funcs = np.zeros((len(system_terms), 1 + len(system_terms), len(grid)))
if len(grid) == 1:
# Only shifts need to be calculated
for eq_ind in range(funcs.shape[0]):
funcs[eq_ind, 0, 0] = system_terms[eq_ind](grid[0], *approximation_point)
else:
fitting_matrix = np.zeros((funcs.shape[1], funcs.shape[1]))
for row_ind in range(funcs.shape[1]):
next_point = approximation_point.copy()
if row_ind > 0:
next_point[row_ind - 1] += sampling_steps[row_ind - 1]
fitting_matrix[row_ind, :] = [1, *next_point]
for eq_ind in range(funcs.shape[0]):
for point_ind in range(funcs.shape[2]):
fitting_vector = np.zeros(funcs.shape[1])
for row_ind in range(funcs.shape[1]):
next_point = approximation_point.copy()
if row_ind > 0:
next_point[row_ind - 1] += sampling_steps[row_ind - 1]
fitting_vector[row_ind] = system_terms[eq_ind](grid[point_ind], *next_point)
funcs[eq_ind, :, point_ind] = np.linalg.solve(fitting_matrix, fitting_vector)
return funcs
def solve_ode(system_terms, grid, boundary_condition, points_per_step, equations_per_step, solver, max_attempts, max_error):
"""Solves a given ODE system, defined by system_terms and known_points, by formulating it as a QP problem.
Args:
system_terms (numpy.ndarray): 1D array of functions that define rhs of each ODE in the system. Each function is linearly approximated within a given job.
grid (numpy.ndarray): 1D Array of equidistant grid points.
boundary_condition (numpy.ndarray): 1D array of initial values for each function in the system.
points_per_step (int): Number of points to vary per job.
equations_per_step (int): Number of equations to vary per job.
solver (Solver): Solver to solve QP problem.
max_attempts (int): Maximum number of times each problem can be solved (restarts can find a better solution for some solvers).
max_error (float): Maximum error that does not trigger restart.
Returns:
solution (numpy.ndarray): 2D array with solution for all functions at all grid points.
errors (numpy.ndarray): 1D array with errors for each job.
"""
print(f'Solving ODE... Solver={type(solver).__name__}; N={len(grid)}.')
solution = np.zeros((len(system_terms), len(grid)))
solution[:, 0] = boundary_condition
dx = grid[1] - grid[0]
point_ind = 0
errors = []
working_grid = grid[:-1]
while point_ind < len(working_grid):
if point_ind == 0:
sampling_steps = np.zeros(len(system_terms))
funcs = calculate_term_coefficients(system_terms, solution[:, point_ind], sampling_steps, working_grid[point_ind: point_ind + 1])
else:
sampling_steps = solution[:, point_ind] - solution[:, point_ind - 1]
sampling_steps[abs(sampling_steps) < 1e-10] = 1e-10 # Ensure non-zero steps
funcs = calculate_term_coefficients(system_terms, solution[:, point_ind], sampling_steps, working_grid[point_ind: point_ind + points_per_step])
solution_points = np.zeros(solution.shape[0])
eq_ind = 0
while eq_ind < len(solution_points):
H, d, energy_shift = build_qp_matrices(funcs, dx, solution[:, point_ind], eq_ind, eq_ind + equations_per_step)
lowest_error = np.inf
for attempt in range(max_attempts):
job_label = f'Point ind: {point_ind}; Eq. {eq_ind}; Attempt {attempt + 1}'
trial_points = solver.solve(H, d, job_label)
trial_error = np.dot(np.matmul(trial_points, H), trial_points) + np.dot(trial_points, d) + energy_shift
if trial_error < lowest_error:
lowest_error = trial_error
solution_points[eq_ind: eq_ind + equations_per_step] = trial_points
if trial_error < max_error:
break
errors.append(lowest_error)
eq_ind += equations_per_step
solution_points_shaped = np.reshape(solution_points, (len(system_terms), funcs.shape[2]), order='F')
solution[:, point_ind + 1: point_ind + funcs.shape[2] + 1] = solution_points_shaped
point_ind += funcs.shape[2]
print_progress_bar(point_ind, len(working_grid))
return solution, np.array(errors)